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ABSTRACT

Morrow, Robert Kendall, Jr., Ph.D., Purdue University, May 1988. Bit-to-Rh.
Error Dependence in Direct-Sequence Spread-Spectrum Multiple-Access Packet
Radio Systems. Major Professor: James S. Lehnert.

Slotted direct-sequence spread-spectrum multiple-access (DS/SSNLA)

packet broadcasting systems with random signature sequences are analyzed

within the framework of the lower three layers of the International Standards

Organization Reference Model of Open Systems Interconnection. At the physi-

cal layer, we show that a widely-used Gaussian approximation (which we call

the Standard Gaussian Approximation) for the probability of data bit error in

a chip and phase asynchronous system is accurate only when there are a large
number of simultaneous users on the channel; otherwise, this approximation

can be optimistic by several orders of magnitude. For interfering signals with

fixed delays and phases relative to the desired signal, however, the Standard

Gaussian Approximation is quite accurate for any number of simultaneous

users. To obtain a closer approximation to the probability of data bit error

for an asynchronous system, we introduce the Improved Gaussian Approxima-

tion, which involves finding the distribution of the multiple-access interference

variance over all possible delay and phase values and then taking a Gaussian

approximation over the support of the distribution and averaging the results.

To accurately analyze packet performance at the data link layer, we first

use the theory of moment spaces to gain insight on the effect of bit-to-bit error

dependence caused by the constant relative delays and (possibly) phases of the
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interfering signals over the duration of a desired packet.' If no error control is
4A

used, we find that this error dependence increases the average probability of

packet success. When error control is employed and the channel is lightly

loaded, then packet performance diminishes when bit error dependencies exist,

but performance improves when the channel is heavily loaded and the

multiple-access interference is high. Numerical results for the probability of

packet success are obtained through the Improved Gaussian Approximation.

At the network layer, provided packet losses occur only from data bit

errors due to multiple-access interference, we show that a DS/SSMA packet

radio system using the slotted ALOHA protocol possesses a significant

throughput advantage over that of an equivalent narrow-band slotted ALOHA

system. Furthermore, if error control is used to correct some of the data bit

errors in the packet, then the maximum throughput per unit bandwidth of the

DS/SSMA system is also higher.
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CHAPTER 1

INTRODUCTION

Finding efficient methods of transmitting digital data between two or

more nodes in a communication network is a topic of great interest: as the

need for reliable communication increases, higher and higher demands are

placed upon the limited radio spectrum to provide channels to carry this data.

Packet broadcasting systems have been widely used to allocate radio

communication channels in such a way that users with bursty traffic can share

a common frequency without significant degradation to a single user's
throughput or average packet delay. Because of the multiple-access nature of

the packet system, total channel throughput is increased dramatically.

Spread-spectrum radio systems also allow multiple-access to the channel by

wide-band averaging (direct sequence) or avoidance (frequency hopping),

making it possible for multiple users to send data on the channel

simultaneously. Additional advantages of the spread-spectrum signaling

technique include communication security and reduced intersymbol

interference from multipath.

If two or more packets are transmitted simultaneously over a narrow-

band communication channel, a "collision" occurs, resulting in the destruction

of all packets involved. Since multiple users can coexist on a spread-spectrum

channel, the concept of a packet collision is no longer applicable in the strict

sense; instead, the probability of a successful packet gradually reduces as

channel traffic increases. Because of this special multiple-acccss capability,

spread-spectrum packet communication is well-suited to the ALOHA

transmission technique, whereby a message is transmitted as soon as it arrives

if the system is unslotted, or at the beginning of the next time slot otherwise.

One of the major analytical difficulties in modeling a direct-sequence

spread-spectrum multiple-access (DS/SSMA) communication system is the bit-
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to-bit error dependence present in the multiple-access interference statistic,

corresponding to a communication channel with memory. Although we can

calculate arbitrarily tight upper and lower bounds on the probability of a

single bit error due to multiple-access interference, determining the probability

of packet error is no longer straightforward.

1.1. Previous Research

The International Standards Organization (ISO) has developed a

Reference Model of Open Systems Interconnection (OSI) [1] composed of seven

layers, of which the lower three are most applicable to the special nature of

spread-spectrum communications. The lowest is the physical layer, which is

concerned with transmitting raw data bits over a communication channel.

The second level is the data link layer, which determines the packet structure,

error control capability, and transmitter-receiver bit and word synchronization

methods. Finally, the network layer controls message routing on the shared

channel and regulates the flow of packets.

The majority of direct-sequence spread-spectrum research has been done

at the physical layer in the area of modeling the nature of the multiple-access

interference and attempting to obtain bounds or approximations to the

probability of bit error. Lehnert has developed a technique to obtain upper

and lower bounds on the probability of data bit error by constructing the

actual density function for the multiple-access interference, given random

signature sequences for all users [21. This method can be applied in a

straightforward manner to derive a similar density for deterministic sequences

as well. Prior work in this area involved the theory of moment spaces [31 to

bound the effect of multiple-access interference on a single data bit, and the

use of a Gaussian density approximation [41 after determining the mean and

variance of the multiple-access interference statistic. In [51, bounds on the bit

error probability for deterministic sequences were developed from the

convexity properties of the error probability function, and the characteristic

function of the multiple-access interference component is integrated in [61 to

find an approximation to the data bit error.
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Research applicable to the data link layer in direct-sequence spread-

spectrum communications is relatively sparse. An attempt has been made in

[71 to bound the packet error probability in a system employing convolutional

coding and Viterbi decoding for error control. The authors assume a certain

worst-case conditioning to force independent channel error events; because of

this, the derived lower bound on system performance is probably loose.

The networking aspect of spread spectrum packet radio has been

addressed to a greater degree than that of the data link layer, but the area is

by no means thoroughly researched, in part due to the complex nature of the

multiple-access interference present at the physical layer. Most work in the

networking area suffers from an oversimplification of the lower two levels of

the ISO standard to allow a reasonably complex network model to be solved

with moderate effort. For example, a common simplification at the physical

layer is to assume that once the receiver acquires a packet through successful

decoding of the synchronization preamble or header, then the remainder of the

packet will always be received correctly [81-jllj. Various assumptions are

made to insure that the receiver cannot always synchronize or decode the

header properly, such as in 18), which analyzes a slotted ALOHA packet radio

network by basing performance solely on whether capture is attained, which is

in turn deemed successful if and only if no other transmissions occur within a

certain "vulnerability period" after the beginning of a desired transmission.

The communication channel is considered noiseless for the duration of the

packet, so successful capture is equivalent to a successful packet

transmission.t

Raychaudhuri 1131 derives a networking model in a manner somewhat

similar to that used in this paper, but uses a form of idealized spread-

spectrum coding which essentially provides a noiseless channel until the

number of simultaneous users exceeds a certain threshold, after which the

channel rapidly becomes useless. This approach is also taken in [141, only the

channel is considered noiseless when X or fewer users transmit simultaneously,

This idealistic channel assumption is not without historical precedent. In his paper on
narrow-band ALOHA networks, Abramson [121 assumes that a communication channel
is useless if two or more transmissions overlap; otherwise the channel is considered
noiseless.

X
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and useless otherwise. Signature sequences used in practice result in a more

gradual channel deterioration as the number of interfering users increases.

Polydoros and Sylvester [15] discuss the necessity of incorporating a more

realistic approach to packet error probabilities.

Brazio [16], [17] performs a detailed analysis of multihop packet networks

incorporating various spread-spectrum signaling schemes. For his numerical

results, tractability is maintained once again by assuming an idealized capture

model, approximations to the probability of bit error, independent bit error

events, and no error correction capability.

None of the networking papers researched incorporates bounds on or an

accurate approximation to the probability of bit error in the multiple-access

environment (the most detailed work uses only a simple Gaussian

approximation), nor have they accounted for the bit-to-bit error dependency

present on the communication channel.

1.2. Thesis Overview

All of the previous work in analyzing the networking aspect of spread-

spectrum packet radio systems have made simplifications at the physical and

data link layers to allow tractability of analysis at the network layer. Due to

the complex nature of the DS/SSMA signaling environment, this thesis takes a

different approach: that of performing an accurate analysis of the physical and

data link layers, and comparing these results to various less-accurate but

widely-used approximations when analyzing the throughput and network

capacity for a simple slotted ALOHA networking protocol. This protocol

allows us to use fixed packet lengths and provides full overlap of all packets

within a slot. In addition, all links in the network are assumed to be single

hop, with no hidden terminals. This situation is likely to be encountered in a

large single-room factory assembly facility, for example, where fixed and

mobile machinery are controlled by a central computer via spread-spectrum

packet communication. The slotted ALOHA model provides the framework to

incorporate a more accurate picture of packet behavior at the lower two ISO

layers while still producing useful results at the network level.

- ' P I PP U
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In this thesis, a method is presented in Chapter 2 which calculates the

probability of data bit error at a computational complexity equivalent to that

needed for the bounds technique, but with an accuracy that is much greater

than that offered by a widely-used Gaussian approximation. These results

provide the groundwork for calculating in Chapter 3 the probability of packet

success while accounting for the dependence of data bit error events due to

the multiple-access interference (MAI). The results are valid whether or not

the packet has block error correction capability. Next, equations modeling the

throughput versus offered channel traffic are derived in Chapter 4 for a slotted

direct-sequence spread-spectrum multiple-access packet network, and

throughput vs offered rate plots are generated while using different

approximations for the probability of packet success. The effect on

throughput is studied when a block error correcting code is implemented

within each packet. Finally, network capacity for various packet and

signature sequence lengths is determined, and the throughput per unit

bandwidth at capacity of the DS/SSMA method is compared with t hat of a

narrow-band channel. In Chapter 5, we offer some conclusions and suggestions

for further research.

r
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CHAPTER 2

THE PHYSICAL LAYER:

PROBABILITY OF DATA BIT ERROR

2.1. Introduction

At the physical layer, we are concerned with the transmission of raw data

bits over the communication channel [1[, so our analysis is directed toward

finding the probability of data-bit error Pe for a given signaling technique. An

appropriate DS/SSMA system model is used lo derive an expression for the

transmitted signal, which is then passed through a correlation receiver; the

signal present at the receiver's decision block has the necessary form to

perform a statistical analysis from which Pe may be determined.

In this chapter, we present three general methods by which the

probability of bit error may be determined when interfering transmitters

employ random signature sequences. The first technique, developed in [21, is

somewhat involved but produces arbitrarily tight bounds on P," We specialize

this procedure to rectangular chip pulses, calculate the computational

complexity, and use these bounds to check the accuracy of the other two

techniques. The second technique we use for calculating Pe is the Standard

Gaussian Approximation, which is based upon the assumption that the MAI is

a Gaussian random variable. This approximation derives much of its appeal

from the fact that it is very easy to compute, with computational complexity

of order 1 regardless of the size of N (the number of chips per data-bit), or K

(the number of simultaneous users). We show, however, that when the

interfering signals are averaged over their relative delays and phases, the

Standard Gaussian Approximation is accurate only when K is large, leading to

the unfortunate consequence that the approximation is good when the bit

error rate is high and the system is performing poorly. Furthermore, when K

,, ,'w
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is small, the Standard Gaussian Approximation is optimistic compared to the

actual Pe, so systems designed around this approximation may perform worse

than expected. These shortcomings may be overcome through a new technique

called the Improved Gaussian Approximation, which is based upon the premise

that, given a specific desired signature sequence, if the phase and delay ofp|
each interfering signal are fixed, then the MAI is closely approximated by a

Gaussian random variable. After finding the distribution of the variance of

this random variable for all possible combinations of delay and phase values,

and for all desired signature sequences, we can determine P, with much

greater accuracy than with the Standard Gaussian Approximation, but at an

equivalent computational complexity to that offered by the method of bounds.

2.2. System Model

2.2.1. Transmitted Signal

The spread-spectrum system model examined in this thesis is similar to

that used in [21 and [4j, shown in Figure 2.1 for K users. The k-th user's data

signal bk(t) consists of a sequence of unit amplitude, positive and negative,

rectangular pulses of duration T. If we define a rectangular pulse as
I1, 0< t< T

PT(t) = , elsewhere (2.1)

then the k-th data signal becomes

b,:(t) = bj(')PT(t-2T), (2.2)

where the bi are taken from a random binary data stream having values of +1

or -1 with equal probability. The k-th user is assigned a spreading waveform

ak(t), also consisting of unit amplitude, positive and negative, rectangular

pulses of duration T C. Hence,

ak(t) - a.,k)pT,(t-TC), (2.3)

with the aj being produced by another binary stream of +1 and -1 values

independent of b,. The k-th user's spreading sequence (or signature sequence)



*A oj(lcos(wct+ 02)

AoK~t )CoSK(ctTOK

Figure 2.1. DS/SSMA system model.
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has N elements per data symbol. If we define a single spreading pulse as a

chip, then we have N chips per data bit, and T = NT C.

Phase modulation in this system is performed by combining a total of

three signals: carrier, signature sequence, and data sequence. The k-th user's

carrier is given by

ck(t) = 2Psin(wct +0k), (2.4)

where P is the signal power, wC is the carrier frequency in radians per second,

and Nk is the phase parameter of the k-th carrier with respect to c 1(t ). Phase

modulation by ak(t) and bk(t) produces the transmitted signal

sk(t) N/- sin(w t + (Yk + (r/2)ak(t )bk(t)) (2.5)

= V2P ak(t )b t )cos~wt +'k

To account for the lack of time synchronism between transmitted signals,

we incorporate a delay parameter rk into (2.5), giving

Sk(t -Tk) = 'Pak(t--k)bk(t-Tk)CoS(Wct +'k), (2.6)

where Ok =Hk-wC Tk. Since the delays and phases are all referenced to signal

1, which we call the desired signal, it follows that r 1 ='. 1 =0. Furthermore, we

take relative delays modulo T and relative phases modulo 27.

2.2.2. Demodulated Signal

, If K users each transmit a signal of the form (2.6) onto a noiseless,

attenuation-free communication channel, then n (t) -0 in Figure 2.1 and

K
r(t) '- sk(t-rk)' (2.7)

k=1

* At receiver 1 (the desired receiver), r(t) is multiplied by a signal from a local

oscillator which is both phase-synchronized to the carrier frequency and phase

modulated by a time-synchronized copy of the desired signature sequence, and

the result is then integrated over the period of a data bit, producing the

output
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T

Z1 = fr(t )a,(t )cosL),t dt. (2.8)
0

By assuming that L-C > 1/T and that the double frequency component of

r(t)coswct is completely eliminated by the post-detection filter, we have

Z, =T P-fi- 2b7  + \ KI 1-k-'') (2.0)
+ 1 >Iki A k,kvk 1(2 )

where Ik, 1 is the interference at the desired receiver from the k-th user, given

by

wkt(b-kl(,.,P) = T-'[B,,(bk,T)cos6 (2.10)

with

B=,(b,7) = b ()Rk,(r) + bk)Rk,l(r) . (2.11)

The vector _---(b () ,b( k)) represents a pair of consecutive data bits from the

k-th signal, each of which partially overlaps the desired signal. The

continuous-time partial cross-correlation functions are defined [41 as

R .(r) = fak(t-r)a(t)dt', 0 < r < T (2.12)
0

T

fl,(= fak(t-r)ai(t)dt , 0 < r < T . (2.13)

Under our random signature sequence assumption, the probability is high

that interfering data will have signature sequences with low cross-correlation

values with the desired signature sequence, so when the two sequences are

multiplied together at the receiver, the resulting interference from the k-th

transmitter will integrate to a value Ik,(-,,rk,o:k) close to zero for

k .2, ... ,K .. In actual systems, sequences are carefully chosen so that

cross-correlation values are kept small.

. !~~~~ -~ . .. . . .i'
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2.3. Motivation for the Random Signature Sequence Approach

Although specific signature sequences are chosen for each user in actual

DS/SSMA systems, analysis is sometimes facilitated by assuming that all users

employ signature sequences that are completely random. Indeed, there are

many situations where deterministic sequence analysis becomes either

impractical or impossible, such as: 1) the sequences of the interfering users are

unknown; 2) there are many users in the network; or 3) users may employ

different sequences for each of a number of consecutive data bits. In case 1,

that of unknown interfering sequences, using detrministic sequences in the

analysis is impossible, while in the other two situations deterministic analysis

produces prohibitive computational complexity. The random sequence

approach also offers simplified delay analysis, since receiver performance may

be determined completely by examining interfering signal delays over a single

chip, not over one or more data bits as required by deterministic sequences. If

signature sequences are truly random, however, it follows that certain "bad"

combinations of sequences could occur (albeit with low probability) between

simultaneous transmissions which can render the communication channel

essentially useless for two or more users over a period of time. Since this

situation is (hopefully) avoided in actual systems, one can argue that random

sequence analysis produces a lower bound on actual system performance i17).

The results in this thesis are obtained by assuming that all interfering

users have random signature sequences, and that a different sequence is used

for each data bit. However, most of the computations are performed by first

conditioning on a specific desired signature sequence (actually, a specific

autocorrelation value for a given sequence). The probability of data bit error

is then calculated for each of these particular autocorrelation values, and the

results are averaged to obtain the probability of data bit error for a desired

sequence that is also randomly generated. If the desired signature sequence is

known, then there may be no need to average over all possible desired

sequences, since accuracy will be reduced and computational complexity

increased by doing so.

.. ~t W.%
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2.4. Bounds on the Probability of Data Bit Error

To obtain arbitrarily tight bounds on the probability of bit error in a

direct-sequence spread-spectrum signal, we can follow the procedure developed

in [2] with some simplifications and improvements in accuracy. The procedure

derives its utility by constructing the actual multiple-access interference

density function from all possible cross-correlation values of random signature

sequences, but with computational complexity that is only polynomial in N .2

and K. In this thesis, we assume that no additive white Gaussian noise

(AWGN) is present, so that all data bit errors are produced by multiple-access

interference alone, and we specialize this technique to rectangular chip pulses.

In all cases, conditioning on the number of simultaneous users K is implicit.

2.4.1. The Correlation Receiver Output Statistic

We begin our calculation of the output statistic of correlation receiver 1

by manipulating (2.12) and (2.13) as follows. Since there are N chips per data

bit, we can define the discrete aperiodic cross correlation function as

a )a (n7 On _N-1

j7=0

N-Il+n (ck,(n) a \ ) ,  1-N< n< 0 (2.14)
j=0

0, nI >N

allowing us to rewrite (2.12) and (2.13) as

Rk,i(r) = T [Cki(1-N)j + (-ITs )lCk,i(l+1-N)-Ck(1-N)), (2.15)

and

Rk,i(r) = T [Ck,i(1)1 + (r-1T)[Ck,i(1+1)-Ck,,(1), (2.16)

where O<IT, r<(1+1)T, <T. For i =1, the parameter I represents the

number of complete chips in the time offset between the k-th and desired

signals; i.e.,
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(2.17)
TCI

Suppose each interfering signal uses randomly-generated signature

sequences with a new sequence being selected for each consecutive data bit. In

this case, we need only examine delays over a single chip, since the average

effect of interfering signals on the desired signal is the same regardless of the

number of chips that an interfering data bit is displaced relative to the desired

signal. Put another way, the k-th interfering signal is an infinite sequence of

pulses of duration T, with amplitudes uniform on {-1,1}, and having a

random time displacement Sk to the desired signal, where 0 < Sk < T,. We can

now let I =N-I, for example, which simplifies (2.15) and (2.16) to

Rk,I(Sk) = T, [Ck,l(-1)]+ Sk [Ck,1(0)-Ckl(-I)l (2.18)

N-2 N-1
-(Tc-Sk) E a a (1) + Sk \ ' a k)a (1),

j=0 j=0

and

1k,(Sk) = (T-Sk)a )a( 1 , (2.19)

where a !k) represents the first chip in data bit b~k); this chip is independent of

ak), the first chip in data bit b(_Q. Substituting (2.18) and (2.19) into (2.11)

gives

B(S)= (+ S)r~2> 2 i 3 1 ± a1 k)aj 1](2.20)

N-2

±Sk a k)a(')
j=0

Note that since the signature sequence of the k-th interfering signal is random,

Bk,(Sk) no longer depends upon the interfering data bits b (_) and bW). Next,

the terms of (2.20) can be rearranged to produce

Ir
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BkN(Sk) = (kJ ) (TC-Sk)aJ') + Ska(')] (2.21)

kII(Sk) _j )+ 0+1'=0

+ Ska k)a") + (T,-Sk)a ,)a__!l

At this point, we can simplify notation by introducing the symmetric

Bernoulli trial b, which has outcomes uniform on the set 1 Note that b

has zero mean and unit variance, and that each ak), and t P product of any

two or more independent ak), may be represented by an appropriately

indexed b. We also condition on the desired sequence aJ')=d, for

j {O, 1, ... ,N- }. By using the fact that [dj -2 =1, (2.21) becomes

N-2 1
Bk,I(Sk) = \ b I~ [(T,-Sk) + Skdipl+ (2.22)

j=0

+ Sk bo + (Tc-Sk)bN

To gain more insight into the nature of (2.22), we note that djd 1 I E

-1,1}, so we can let

,,={j: aij+, =1}, (2.23)

and

3 = {j: a =-1} (2.24)

for j E {0, 1, . . . , N-2 }. After rearranging terms, we have

Bk,I(Sk) = PkSk + Qk(Te-Sk) + XkT, + Yk(T -2Sk), (2.25)

where Pk =b 0 and Qk =bN are uniform on j-1,1}, with

X= \1 b (2.26)

and

Yk b . (2.27)

Equation (2.25) is identical to a result derived in [2j for interfering users which

select a signature sequence at random at the beginning of a transmission, but
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then repeat this sequence for each data bit in the message.

If we denote the cardinalities A = Icj and B = 1' , then Xk and Yk are

produced by the sum of A and B symmetric Bernoulli trials, respectively, and

thus have densities

Px J A 1 ; j {--A,-A +2, . . ., A-2, A (2.28)

and

PY B; 1 -B e {-B, -B+2,..., B-2, B . (2.29)

2

From (2.23) and (2.24), we see that A +B =N-1. Furthermore, if we define

the discrete aperiodic autocorrelation of the signature sequence of receiver 1,

offset by one chip, by

N-2C \' a(')a (2.30)
j=0

then we also have A -B C. Therefore,

A N-I+C (2.31)
2

and

B - N-1-C (2.32)
2

From (2.30), we find that, for random desired sequences, C is distributed as A

the sum of N-1 symmetric Bernoulli trials, so the density of C is given by

Pc(J)= N-1 21- N' E I {1-N, 3-N,...,N-3, N-1}. (2.33)

Note that if any two of the four quantities A, B, C, N are known, the other

two may be found by using (2.31) and (2.32).

Finally, by substituting (2.25) and (2.10) into (2.9), we determine the

output statistic of receiver 1, with all signals at received power P =2, and

given K-1 interfering users, rectangular chip pulses, desired data bit bp = 1,

and normalized to the chip duration T c = 1, to be
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K
Z, = N + Wk Cos0Pk (2.34)

k=2

where

Wk = PkSk +Qk(1-Sk) +X +Yk(I-2S); 0<Sk<T =I. (2.35)

Since the random variables Pk, Qk, Xk, and Yk are composed of disjoint

sets of symmetric Bernoulli trials for a particular desired signature sequence,

they are conditionally independent given C. In general, the MAI is not

unconditionally independent, as we can show via a counterexample.t Suppose

N=2, so the desired sequence has C uniform on - and that a single

interfering user has a signature sequence of 1,1 and is chip- and phase-

synchronized to the desired signal. In this situation, when C = 1 the MAI is

uniform on the set {-2,2}, and when C =-1 the MAI is 0. Averaging over the

values of C at this point produces a MAI density function with impulses at

-2, 0, and 2. If the MAI were unconditionally independent, then convolving

this density function with itself should generate the MAI density for two

interfering users. However, from the given information we know that it is

impossible for two interfering users to produce MAI values of either -2 or 2,

but our convolution result has impulses at -4, -2, 0, 2, and 4. We therefore

conclude that the MAI produced by multiple users is not independent unless

we condition on a specific C.

A signature sequence of length N has N-1 chip boundaries, at which the

sequence may or may not change to a different value. The quantity B

represents the number of chip boundaries at which a transition to a different

value occurs. As a consequence, B can be treated as a measure of the amount

of "spreading" given to the desired signal. For example, B is minimized when

C is at a maximum of N-1, which is equivalent to a signature sequence of all

ones (minimum spreading). Conversely, when B is maximized, C is at its

minimum value of -(N-i), and thus the desired signature sequence is

composed entirely of chips alternating between +1 and -1 (maximum

spreading).

This narrative is, by necessity, elementary; the general case is given at the end of the
next section.
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2.4.2. Distribution of the Multiple-Access Interference

We begin the calculation of the distribution of the MAI in (2.34) by

letting K=2 so that there is only one interfering user, and we drop the

subscripts k on the affected random variables. Next, we condition on C so

that the random variables P, Q, X, Y in (2.35) are conditionally independent.

The density of W . jw IC = c [ is perhaps most easily constructed by the

"brute force" method, where we perform further conditioning upon the

discrete random variables P=p, Q=q, X=x, and Y=y. The further

conditioned W now becomes an affine function of S, so S uniform on [0,1]

implies that the conditional distribution of W is uniform on

[a,b=[mina',b'J,maxja',b'Jl, where a'=q +xi-y and b'=p x-y.

After averaging over the distributions of P, Q. X, and Y, we have a collection

of fwlc(w) which can, in turn, be averaged over the distribution of C to

produce fw(w). This density is shown in Figure 2.2 for N=31. Note that

fw(w) consists of a component with a "wedding cake" appearance (produced

when the [a,b 1 are valid intervals), coupled with a set of impulses (produced

when [a,b [is degenerate; that is, when a = b).

Our next step is to find the distribution of Wcos4V, which we designate as

the random variable D, for +P uniform on [0,2r7]. Separate cases for N even

and odd are avoided by assuming that N is odd. We now split fw(w) into a

set of N+1 conditional densities, (N+1)/2 of which are uniform on the set

{-a,a}, and (N+1)/2 of which are uniform on the interval f-a,a[, where

aE{1,3, . . . ,N}.

If a random variable x is uniform on )-a,aJ, then y=xcosF has the

"arc-sine" density [181

(Y) -a <y<a (2.36)

and is 0 elsewhere. (All density functions are defined to be 0 outside their

specified support intervals.) The distribution function for y is found by

integrating (2.36) directly, giving

F(y) + sin 1  __ (2.37)
2 r a "

If x is uniform on -a,a[, then y=xcos' has density 2[

- .- * .,9.
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f,(Y) 7-aliog [a 1 +V~y aY a (2.38)

and distribution function

FY(y) = + - ylog a+ 1 asin(
2 7-a Y a~ i] ; (.9

where log =loge. After taking an expectation over the possible values of a in

the densities given by (2.36) and (2.38), the result is fD(d), which is shown in

Figure 2.3. The figure also includes a plot of a Gaussian density function with

the same variance for comparison.

To find the MAI density when K > 3, which we denote by f =(x), we make

use of the fact that the MAI produced by each interfering user is identically

distributed and conditionally independent given C. Therefore, we must once

again condition on C and find fDiC(x) for each of the N possible values for

C. Next, each density is convolved with itself K-2 times and an expectation

is performed over C; thus:

f -(x) = E[fDIc(X)* ... *fDic(X)1 (2.40)

This function is not, in general, equal to E[fDIC(z)]* . . *E[fjC(.)1=

fD(X)* ."' *fD(X), which represents the MAI density if each interfering user

produced a MAI value which was indeed unconditionally independent from

that generated by the others.

2.4.3. Performing the Bounds Calculations

Since the random variable =, representing the MAI produced by K-1

interfering users, is zero mean, symmetry in the receiver output statistic given

by (2.34) allows us to find the probability of data bit error Pe by performing

the integration

-N

= f f-(x)dx. (2.41)
-X

To obtain numerical results, we are restricted to discrete representations of

f =(x), so we must be satisfied with finding either bounds on or an
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approximation to P,. Fortunately, the bounds may be made arbitrarily tight

(at the expense of increased computation time and memory requirements), so

we pursue this course here. Since K-2 convolutions are performed on each of S

N densities fDIC(X), we avoid notational distractions by using

f (x) = fDIc(x) with cumulative distribution function F(x) =FD c (x).

To prepare f (x) computationally for K-2 convolutions, we divide its

support interval j-N,N] into 2NM subintervals, each of length l/M, which we

index by 0,1, . . . , 2NM-1. The probability that the MAI is between

a =[i/M]-N and b =[(i+1)/M[-N is F(b)-F(a), which we set equal to

f(i). Note that a

2NM-1E / (Zi) = . (2.42)
1=0

After performing the convolutions and averaging over C, we obtain the

discrete density f=(i), i EJO,1, ... ,(K-1)(2NM-1), for the total MAI

produced by K-1 interfering users. Upper and lower bounds on the

probability of data bit error are now found by
T,

P (  \ f(i); I. = (K-2)NM+1, (2.43)
i=0

and

p I, =t (K-2)(NM-1). (2.44)
i =0

We obtain (2.43) by effectively concentrating the probability mass in each

subinterval of f (x) onto the subinterval's leftrnost point prior to performing

the convolutions [2]. This maximizes the total probability mass in I-(i) on

the "wrong" side of the receiver threshold, producing an upper bound on P,

If the mass is instead effectively concentrated on the rightmost point of its

corresponding subinterval, then summing the values on the "wrong" side of

the receiver detection threshold after performing the convolutions produces a ev

lower bound on Pe, given by (2.44).

The procedure of calculating bounds on the probability of data-bit error

can now be summarized. We first condition the desired signal on C and then

perform the following steps (computational complexity order is shown in

Or .l -K
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parentheses):

1. Construct the density of W for each C (N 3 );

2. Find the density for Wcos+ for each C (N 3 M);

3. Convolve the density of Wcos4> for each C with itself K-2 times

(KN 3 M 2 );

4. Average the set of densities over C (KN 2 M);

5. Calculate bounds on P, (KNM).t

We conclude that arbitrarily tight bounds on the probability of data-bit error

in a DS/SSMA communication system may be determined by using a five-step

procedure of computational complexity which is of order KN 3 MW2.

2.5. The Standard Gaussian Approximation

In a narrow-band communication system with additive noise present at a IF

correlation receiver, a data bit error occurs when the integrated amplitude of

the noise exceeds the integrated amplitude of the desired signal in the opposite

direction, causing a decision block error at the receiver. If the noise is a zero-

mean Gaussian process, then the probability of bit error may be calculated by

first finding the signal-to-noise ratio (SNR). Next, Q[SNRj, defined by

Qlx:- I- f e-/ 2 du, (2.45)

is used to evaluate the probability that a wrong decision is made at the

receiver and a data bit error occurs. Additionally, if the noise is white, then

its autocorrelation function is impulsive, and the process produces values

which are uncorrelated (and hence independent) from instant to instant in

time. Thus channel errors are also independent from data bit to data bit.

One may wonder whether it is possible to model multiple-access

interference in a DS/SSMA system as an additive white Gaussian noise process

with variance equal to the MAI variance. It is obvious from (2.34) that the

Actual computation time may be reduced by omitting step 4, performing step 5 for
each conditional density, and then averaging the conditional P, over C.

"A5

.5
5.
.5

.5
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MA! is additive, but the plot in Figure 2.3 shows that modeling the MAI as a

Gaussian random variable may not be accurate. Since we have a method to

calculate bounds on the probability of data bit error caused by the MAI, we

can check the accuracy of the Gaussian approximation by finding the M.MkI

variance, calculating the SNR, evaluating (2.45), and comparing the results to

the actual probability of data bit error. Testing whether or not the MAI is

white (or almost white), so that data bit errors may be treated as essentially

independent, is a bit more difficult. To do this, we must examine the effect of

the MAI on a collection of data bits called a "packet", a task which is

postponed until Chapter 3.

One of the advantages of using a Gaussian approximation to the MAI

produced by a single interfering user is that we gain unconditional

independence from the MAI generated by the other interfering users within a

single desired data bit. Recall from Section 2.4.2 that the actual MAI from

each interfering user is only conditionally independent given C, but we now

show that the MAI is, in fact, uncorrelated.
A

From the structure of the density functions for the random variables Pk,

Qk, Xk, and Yk from (2.35), we find that, for k E2, ... ,K and

l'k { k, Qk,Xk, Yk

E I'kIC= 0 (2.46)

for any C. Combining (2.46) and (2.35), we have

E[Wkcos+k C} =0. (2.47)

We also know that the MAI is conditionally independent given C, which

allows us to write

E Wjcos'P Wkcos' k IC = E[Wjcos Id CIE[Wl 's 'P iCI (2.48)

for j,k E 2,... ,K} and j$k. Taking expectations of both sides of (2.48)

over C and substituting values from (2.47) gives

E[Wjcos'Pj Wkcos(Nk1 = E Wjcos41 j EWkcos)Pk = 0 (2.49)

and thus the MAI produced by each interfering user is uncorrelated (and

orthogonal) to that from the others. If we model the MAI as a Gaussian

random variable, then the MAI components are also unconditionally

independent.

-- S- ' S. VjV i W %= I I i -I . 5 ,.. . .. .. I4~\*%V
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2.5.1. Variance of the Multiple-Access Interference

Calculating a general expression for the multiple-access interference

variance is facilitated by conditioning on C (or, equivalently, B) and by

conditioning on the relative delays and phases of all interfering signals. For

notational convenience, we express the delays and phases of the interfering

signals as random vectors S =(S 2, ... , SK) and 1'=('P2 . . - . 1'K). We also

assume that N, the number of chips per bit, and K, the number of

simultaneous users, are fixed.t

Since the random variables Pk, Qk, Xk, and Yk in (2.35) are zero mean

and conditionally independent (given B), we conclude that the M/tAl term in

(2.34) is zero-mean and each term of the summation is conditionally

independent. By using the fact that the variance of the sum of zero mean

independent random variables is the sum of their second moments, the

conditional variance q' of the MAI is given by

'A Var [MAIIS,,B] = E \ WkcosPk Sk,'Pk,B (2.50)
k=2

= \E WAISk,B E [Cos 2±k
k=2

k=2 II II

The conditional variance of W = Wk is calculated as follows:

Var[WIS,Bj = E P 2 S2IS + EIQ 2(1-S) 2 1SI + E X 2 JB (2.51)

+ ElY 2(1-2S)2IS,B].

Since P and Q are uniform on I-l,1 k, their variance is 1. The variance of X

can be found by expressing X as a sum of A = N-B-1 symmetric Bernoulli

trials and noting that

% In a later chapter, K will be treated as a random variable.

41
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N-B-1
Var(XIBJ = \2 Var~bj] = N-B-1. (2.52)

By similar reasoning,

VarY(1-2S)IS,B = B(1-2S) ' . (2.53)

Combining the above yields

K
4 -\" Zk  (2.54)

k=2

where the Zk are identically distributed and conditionally independent given

B, and Z = Zk is specified by

Z =UV, (2.55)

with

U = 1+ cos(2+) , (2.56)

V - (2B+I)(S2 -S)+N/2 . (2.57)

Now we can determine the average MAI variance and use it to find an

estimate for the average probability of data bit error. If the interfering signals

are not chip and phase synchronous with the desired signal, then the average

MAI variance is found by substituting expected values for S 2 -S and cos(2(P)

into (2.56) and (2.57). Since ' is uniform on [0,2]j it follows that

Ejcos(2'j) = 0, and S uniform on [0,11 implies that

I 1

E[S2-S] - E[S'[ - E[S] fs 2 ds - fsds (2.58)
0 0

1

Substituting into (2.55) gives

EZ'B]- 3N-2B-1 (2.59)

If the desired signature sequence is known, then B is also known and can be

substituted into (2.59). Note that as B varies from 0 (minimum spreading) to

N-1 (maximum spreading), the MAI variance ranges from a maximum value
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of (3N-1)/6 to a minimum value of (N+1)/6.

If the desired sequence is random, then E[C[=0, which implies that

E[B] =(N-1)/2, giving

E[Z = E[E[ZIBII = 3 (2.60)

Since the MAI from each interfering user is uncorrelated to that produced by

the other interfering users, the variances add, so that the total MAI variance

from K-1 interfering users is (K-1)N/3. To find the probability of data bit

error using the Gaussian approximation for the MAI, we treat Z, from (2.34)

as a Gaussian random variable with mean N and variance (K-1)N/3. The

average signal-to-noise ratio is then

SNR = PN3 IV (2.61)
-E \/ij V _K~i7N/3 K-_

which is identical to a result stated, but not derived, in [41. The probability of

data bit error is then approximated by

Pe = Q[SNR}. (2.62)

At this point we digress for a moment and show the utility of using (2.55)

to find the MAI variance under various chip and phase situations. For

random desired sequences, substituting E[B[ = (N-1)/2 into (2.57) produces

EIZIS,11 = N(S2-S'/2)[1+cos(2P) . (2.63)

If interfering signals are chip and phase aligned with the desired signal, for

example, then E[Z IS=0, ( =0] = N, resulting in

SNR1  [ , (2.64)

which also represents a worst-case SNR [191. Using similar reasoning,

interfering signals that are chip aligned with random phases have

SNR2  2 , (2.65)

while phase aligned interfering signals with random chip delays produce

XAI.
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SNR3  3N J (2.66)

2.5.2. Accuracy of the Standard Gaussian Approximation

Returning once again to interfering signals with random delays and

phases, we can now compare the results of the Standard Gaussian

Approximation to the bounds on Pe (Figure 2.4), and we note that the

approximation seems to be accurate only for rather large K. Large K implies

a high Pe and poor system performance, so a designer will be more interested

in accurate values for P, when K is small and the bit error rate is low.

Unfortunately, the Standard Gaussian Approximation is not only inaccurate in

this region, but becomes very optimistic as N grows; consequently, using this

approximation to model multiple-access interference could result in a bit error

rate that is higher than expected. The alternative is to use the bounds

derived in [21 and Section 2.3 at the expense of higher computational

complexity.

The above results show that, in general, multiple-access interference

cannot be accurately modeled as a Gaussian random variable when S and I I

are random unless the number of simultaneous users is large. To discover why

this is so, it will be useful to study how the Central Limit Theorem is used to

justify the Standard Gaussian Approximation, and perhaps we can discover a

way to improve the accuracy of this approximation for smaller values of K.

2.6. Multiple-Access Interference and the Central Limit Theorem

The Central Limit Theorem is often quoted as justification for using some

form of a Gaussian approximation for the multiple-access interference density

function when N is large (see, for example, [201). However, we just showed

that a large number of simultaneous users K seems to be necessary for the

Standard Gaussian Approximation to be accurate, regardless of the number of

chips per data bit N. Fortunately, though, there are specific conditions under

which the Central Limit Theorem does allow us to accurately approximate the

- W4.XU Jt S
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multiple-access interference by a Gaussian random variable for large N and

for any value of K. We will then use this intermediate result to derive the

Improved Gaussian Approximation for the probability of data bit error, and

we show that this approximation is more accurate than the Standard Gaussian

Approximation and more computationally efficient than calculating bounds on
P .

We begin by stating without proof a form of the Central Limit Theorem

which is useful for our applications [211:

Theorem 2.1 (Central Limit). Let X 1 , X 2 , . . . , . . . be a sequence of

zero mean lid random variables, each with finite variance 72. Let

Z n = 1, 2,... (2.67)

n
be the normalized sequence, where Sn =\ X.. Then

j= 1

"im Zn - (O, 0) (2.68)
n -,,c

where N(p,n2) denotes a Gaussian random variable with mean it and variance

o2, and "-" means "is distributed as".

To examine the effect of the Central Limit Theorem on the multiple-

access interference, we normalize the receiver output statistic in (2.34) by N

and K as follows:

=_Z _,_ __. N + \ WkcosN (2.69)
V iV(K-i VN(K-l) k=2

N J " 1 K

______\'Wkcos~kr

K- N/ N(K-LI) k=2

The first term on the right side of (2.69) is deterministic and represents the

mean value of the normalized receiver output statistic, while the terms in the

summation express the MAI as a zero mean random variable.

A
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2.6.1. Many Simultaneous Users

We begin our investigation into the effect of a large number of

simultaneous users by fixing N and allowing K-.--;. The Central Limit

Theorem may be applied directly, giving

Ir N 1"~ 1 11K• urn \" Wkcos4Pk  (2.70)

N(O, 1/3).t

Since the MAI converges in distribution to a Gaussian random variable,

the QI'] function given by (2.45) may be used to accurately find the

probability of data bit error for large K. The mean of the normalized receiver

output statistic is VN/(K-1) from (2.69), but this value converges to 0 as

K-c--, leading to the result

lim Pe = QOj = '/2. (2.71)
K-,,

This is not surprising, since increasing the number of simultaneous users for

fixed finite N eventually results in a useless channel.

We conclude that for a large but finite K, the normalized receiver output

statistic can be accurately modeled as a Gaussian random variable with mean

V/N/(K-1) and variance 1/3, producing an average SNR of \13N/(K-1).

This result holds even for a relatively small N. For a large N and small K,

however, the applicability of the Central Limit Theorem is a bit more subtle, a

situation which we examine next.

' At first, it seems odd that the variance of this random variable does not depend upon
N. However, by multiplying both sides of (2.69) by V N, the normalization by N is
removed and the MAI then converges in distribution to N(O,N/3), which agrees with '

the MAI variance given by (2.60).

I e.
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2.6.2. Many Chips per Data Bit

To analyze the effect of a large N on the distribution of the multiple-

access interference, we must use care because N acts differently upon each of'

the various terms of Wk given by (2.35). We begin by fixing K, B, S =, and

A =L, and by bringing the normalization factor 1//W into the summation of

(2.69), giving

IN + 1 K
(I 1K-i _\__ W'kcos,k , (2.72)

where

Pksk  Qk(1-sk) + Xk + Yk(1-2sk) (2.73)

At this point, we find it convenient to introduce a quantity called the

spreading factor ,/E(0,11, defined as

r N-1B (2.74)

Holding qj constant as N varies has the same effect as allowing B to vary in

proportion to N-1. For notational convenience, we drop the subscripts k and

rewrite (2.73) as

I s 1Is 1 -,)(N-1) 1-2s ,I(N-1)
- bp b1 + V+ b. (2.75)

N I V ~ V N V"N i=I7 j=1

where we have expressed A and B in terms of the spreading factor ij, and P,

Q, X, and Y have been represented as an appropriate sum of symmetric

Bernoulli trials. As N becomes large, the first two terms on the right side of

(2.75) vanish and the limit becomes, for riC(0,1),

1 (1-,,)(N-1) 1-2s ,I(g-1)

lim W' = lim - V bi + lim - \ bi (2.76)

/m 1 (i-,,J(N-1)/i. 1 \_( b-i)

= Ni-/ Jim V b, +V§7(l-2s) lim V~. j bN- Nj=i

- /1-1, lim \V bi + N/r(1-2s) lim V bn " - -c n i=-1 V n j=1 %

The Central Limit Theorem can now be employed to show that the first term
!Y
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in (2.76) converges in distribution to N(O, 1-r), and the second term converges

in distribution to N (O, (1-2s) 2). For j =-0, (2.76) converges in distribution to

N(O, 1), and when q= 1, (2.76) converges to N (O, (1-2s)2). The two terms on

the right side of (2.76) represent a normalized form of the random variables Xk

and Yk in (2.35), which are conditionally independent when given B.

Now the reason for fixing I and S becomes clear: under these conditions,

as N--c, equation (2.69) becomes a linear combination of independent

Gaussian random variables, and hence the normalized receiver output statistic

j is also Gaussian with mean %IN/(K-1)--, c and variance

(72 K-i 2 [1+47(s:-sk)]cos2c "  (2.77)

Once again, we employ the Q[x] function to find the probability of data bit

error as N--oc, giving for finite K,

limPe =Q[-\cl =0. (2.78)N-,,-

This result leads to the logical conclusion that as the number of chips per data

bit increases for fixed finite K, the communication channel eventually becomes

noiseless.

We now make the important observation that for large but finite N,

provided relative delays Sk and phases 41k are fixed, and for a particular il and

hence a particular B, the normalized receiver output statistic can be closely

approximated by a Gaussian random variable with mean /N/(K-1) and

variance given by (2.77). This observation provides the basis for a new

technique, called the Improved Gaussian Approximation, for finding the

probability of data bit error in a DS/SSMA communication system. This

technique is very accurate even for small K, and has computational

complexity equivalent to that of finding bounds on Pe. In addition, the

Improved Gaussian Approximation lays the groundwork for calculating the

effect of bit-to-bit error dependence, the details of which are in Chapter 3.

-J
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2.7. The Improved Gaussian Approximation

Returning to equation (2.50), we note that the conditional MAI variance

'P is a function of the delays and phases of all interfering signals and of the

desired sequence structure expressed through the quantity B; consequently,

each outcome WP=0 is produced by specific outcomes of S, +, and B. In

addition, results from the previous section show that as N becomes large,

Q [N//IV gives an accurate approximation of Pe for a particular ?P.

Therefore, if we can find the distribution of \l, then the approximate

probability of data bit error can be calculated directly by

E[Q[ ]]= fQ N f (d0 (2.79)

At first, the task of finding f ,(V) appears extremely complex, since there may

be numerous interfering signals, each of which has an infinite number of

possible values for S and +F. However, the k-th user's signal variance Zk given

by (2.54)-(2.57) is independent of and identically distributed to the variance of

the other users, so we can proceed by first finding the distribution of the

variance produced by a single user.

2.7.1. Distribution of the Multiple-Access Interference Variance

The distribution of Z from (2.55) is found as follows. Since 4) is uniform

on [0,27-1, U has a form of arc-sine distribution i181 with density

fu(u) 0 1 0 < u < 2. (2.80)

7 V u (2-u)

(As before, all density functions are defined to be 0 outside their specified

support intervals.) The conditional density of V is determined to bet

1N-B N (.1
fvIB(v) =2 <V < 2 (2.81)

VB(2v +h -N)'

where B =B+'/2 = (N-C)/2. Finally, we note that U and V are

The derivations of (2.81), (2.82), and (2.84) are given in the Appendix.

*1
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independent, allowing us to construct the density of Z = UV as

f~z) og N-+V'~ O<z<N

f ZB(Z) log N-z - z 1N-. (2.82)

where log=log,. Next, we remove the conditioning on B and obtain the result

fz(z) = ElfzIB(Z)l = 21N -J [Nl fzi (z) "  (2.83)

This density is plotted in Figure 2.5 for N = 31. The cumulative distribution

function of ZIB may be found by integrating (2.82), giving

1 - -- b(a 2 +c 2)
FZIB(z) 1 , log I a(b 2 +c 2) (2.84)

N-z

+ V log I a ; 0<z<N,

where

a = NVN-z + '

c = VI-b +Vz.

Since the Zk in (2.54) are conditionally independent given B, the density of the

total MAI variance 4P is

f p(z) = Ef ziB(z)* *f ZB(z)l (2.85)

with K-2 convolutions being performed. P is now found by evaluating

(2.79).

I
-1
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2.7.2. Computation Methods and Accuracy

To prepare fzu(z)=f (z) computationally for K-2 convolutions, we

divide the interval 0,N] into NM subintervals, each of length I/M, and note

that the probability that the MAI variance is between z/M and (i-+)/M is

F((i+1)/M) - F(i/M), which we set equal to 1(i). By concentrating the

probability mass in each subinterval onto its center point, we approximate the

continuous f (z) with a discrete 1(i) that is still a valid density; i.e.,

NM- 1 1
1 f (i) (2.86)

i=0

However, while the support of f (z) is [0,Nj, the domain of 7(i) only extends

from 1/(2M) to N- 1/(2M)]. Therefore, we must use care after performing

the discrete convolutions of 1(i) and averaging over B to insure that each

value of the new discrete density is subsequently matched to the proper MAI

variance when evaluating (2.62). Specifically,

2M(i) ; i C 10, 1, . . . . (K-1)(NM-1) , (2.87)

thus

Pe = Q ) ,(i) (2.88)

where

I = (K-1)(NM-1) (2.89)

and

y(i) -2i+K-1 (2.90)

In summary, calculating Pe using the Improved Gaussian Approximation

requires the following steps (as before, computational complexity order is

shown in parentheses):

1. Construct the density of the variance of Wcos+ for each C (N 2M);

2. Convolve the density of the .L..' variance for each C with itself K-2

times (KN 3 'V!2):
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3. Average the set of densities over the distribution of C (KN 2 M);

4. Perform an expectation to obtain an approximation for Pe (KNM).

Thus the Improved Gaussian Approximation is a four-step procedure with an

order KN 3M 2 computational complexity.t Figure 2.6 compares the Improved

Gaussian Approximation to bounds on P,, showing that this approximation is

quite accurate for all values of K, even when N is surprisingly small.

2.7.3 Deterministic Desired Sequences

The final step in calculating the density function for the random variable

4* is to average over all possible values of B, shown in (2.85). However, the

performance of a specific desired sequence in a multiple-access environment

where all interfering sequences are random may be found by simply finding the

density fzlB(z) for the value of B associated with the signature sequence, and

then evaluating (2.85) and (2.88). At the end of Section 2.4.1 we pointed out

that B may be treated as a measure of the amount of "spreading" given to a

desired signal, so we would expect that the bit error rate improves as B

increases. Figure 2.7 shows this effect as B progresses from 0 (minimum

spreading) to N-1 (maximum spreading) for N =31. The plot for B =0 is

especially interesting; this represents the performance of a narrow-band signal

in a direct-sequence spread-spectrum environment where the interforing signals

have random signature sequences.

2.8. Conclusion

We have shown that the multiple-access interference can be modeled as

an additive Gaussian process for all practical values of N, as long as all

interfering signals have fixed delay and phase relative to the desired signal.

' Since we have shown that both Gaussian approximations converge to the actual P,

for large K, one could reduce computation time still further by comparing P, obtained
by the Standard Gaussian Approximation to that produced by the Improved Gaussian
Approximation as K increases. Once the two values were within a specified error

bound, the Standard Gaussian Approximation could be used exclusively for

computations involving larger K.
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The MAI variance can be expressed as a function of the delay and phase

values, and thus is itself a random variable. We found the distribution of this

random variabip and discovered that an accurate approximation to the

probability of data bit error may be calculated by averaging the Qjxj function

over this distribution. In the next chapter, we show that, in general,

multiple-access interference does not produce independent error events within

a packet of transmitted bits, and hence cannot be treated as a white noise

process. However, if we again fix the delays and phases of all interfering

signals, independent bit errors result, and the probability of packet success

can be found by using some of the techniques developed in this chapter.

-L=
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CHAPTER 3

THE DATA LINK LAYER:

PROBABILITY OF PACKET SUCCESS

3.1. Introduction

The purpose of the data link layer is to provide the functional and

procedural means to transfer data between network entities and to detect and

possibly correct errors which may occur in the physical layer [1]. One method

of accomplishing this task is to divide a message into one or more sets of data

bits called a "packet", and to transmit each packet separately. A packet

normally consists of a preamble, used for initial receiver synchronization,

followed by the header, which contains routing and destination information.

Next, the data is sent, and finally, some type of error control is appended to

allow the receiver to determine if the packet was received correctly [16]. Error

control may also be incorporated into the packet in such a way to allow a

number of data errors to be corrected as well, thus improving packet

throughput in situations where the bit error rate is greater than zero.

For a packet to be successful, the destination receiver must not be busy,

correct synchronization must occur, and the data portion of the packet must

be received error-free or, if error correction capability exists, the packet must

not have more errors than the error control code can correct. Analysis in this

chapter is directed toward finding the probability of packet success given that

the desired receiver is not busy and has already synchronized to the desired

signal containing the packet. As before, we let multiple-access interference

cause all of the data bit errors in the desired signal, and all interfering signals

have random signature sequences which are different for each consecutive data

bit.

- ..- . ~ p~-~ I
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Because of the special nature of DS/SSMA signals, error dependence

exists from bit-to-bit, and finding the probability of a successful packet is not

particularly straightforward. The theory of moment spaces allows us to gain

valuable insight into packet performance when bit-to-bit error dependence

produces a communication channel with memory. We do this by examining

three general cases: packets with no error correction capability, and packets

using block error correcting codes over both lightly and heavily loaded

channels. The utility of moment space bounds is limited, however, since these

bounds cannot be made arbitrarily tight. We therefore turn to the Improved

Gaussian Approximation, developed in Chapter 2, for numerical results. These

results are then compared with other methods which employ various "short

cuts", such as using the Standard Gaussian Approximation and ignoring bit-

to-bit error dependencies.

Some of the analysis techniques used in this chapter require treating the

probability of data bit error P, and other related quantities as random

variables, where we eventually calculate their expectation. In most cases, it

will be obvious out of context whether the random variable or its

corresponding expectation is being used. In places where ambiguity may be

present, we use an overbar for the average value; i.e., P, =EIPe 1.

3.2. Mapping Successful Bits to Successful Packets

Suppose a packet of length L bits is transmitted over a memoryless

binary symmetric communication channel with average probability of data bit

error P,. Assuming no error correction capability, the average probability of

packet error is

RE = (1P)L .  (3.1)

To simplify notation, we define the probability of a successful data bit as

Qe 1 P and the probability of a successful packet as

QE - E = (Qe)L. (3.2)

If the packet includes block error control capability that can correct t or

fewer errors, the probability of packet success becomes

S.

1.4



43

QE (3.3)
i =

which is simply tie sum of the first t +1 terms of the binomial expansion of

[(-Qe)+Qe IL_ Under multiple-access interference in the direct-sequence

spread-spectrum environment, however, the channel now has memory due to

the nature of the interfering signals, and using (3.3) to find the probability of

a successfu] packet may not be accurate.

3.3. The Origins of Bit-to-Bit Error Dependence

One of the analytical challenges presented by the nature of the multiple-

access interference on the communication channel is bit-to-bit error

dependence. Although the data sequence b(t) and the chip sequence a(t) are

modeled as random and independent from bit to bit (chip to chip), error event

dependence stems partly from the fact that the relative delays Sk of the

interfering signals, while randomly selected at the start of a transmission, may

be essentially constant over the duration of a desired packet. It is also

possible that the r-f carrier stability of each transmitted signal may be such

that the phases (Pk of all interfering signals are also essentially constant over

the duration of the packet. (On the other hand, since the desired receiver is

not phase-locked to any of the interfering signals, we may find that phase

jitter in the interfering signals allows us to perform some degree of phase

averaging at the data bit level.) We consider two cases of dependency:

interfering signals that have constant phases and delays over the duration of

the packet, and interfering signals which produce constant delays but random

phases from bit-to-bit relative to the desired signal. Since the duration of a

chip is assumed large compared to that of a single r-f carrier cycle, random

bit-to-bit phases can coexist with delays which are essentially constant over a

desired packet. The magnitudes of the interfering terms in (2.9) depends on

the 5 =(S 2, . . . SK) through the cross-correlation functions, and on the

= ('P2, • • • , 'P) through the cosine terms. There is, however, no dependence

upon the term I in (2.17) since the signature sequence changes for consecutive

data bits in each interfering signal. As a result, if both delays and phases of

rW*- ,-.C .- I i I 'I•...
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all interfering signals are random from bit-to-bit within the desired signal,

then the error events are indeed independent.
I

For analysis to progress with reasonable effort, it is tempting to somehow
assume independent bit error events within a packet. This can be done by

working with the worst-case SNR shown in (2.64), which avoids dependencies

by fixing 0 and S =(, or by merely using the average SNR in (2.61) and

ignoring the dependencies. We now present a method which will allow a more

accurate calculation of the average probability of packet success by

incorporating into the analysis the effects of bit-to-bit error dependency.

First, we apply the technique of moment spaces, developed by Dresher et al

22I, to gain insight into the effect of dependent error events by constructing a

convex hull on the function mapping the probability of a successful bit to the

probability of a successful packet. Analytical results are then obtained by

conditioning on the dependent random variables to obtain bit-to-bit error p

events that are conditionally independent, allowing us to directly map the

conditional probability of a successful bit onto the conditional probability of a

successful packet by using (3.3). We then perform an expectation operation

over packets to obtain the average probability of packet success. The

conditioning is performed on the random variables in the multiple-access

interference which are essentially fixed during the transmission of a desired '.

packet, such as the relative delays of the interfering packets and (possibly) the

relative phases of the r-f carriers. I

3.4. Moment Space Bounds on Packet Performance

Suppose we have a random variable X for which the distribution Fx(x) is :1

defined on the closed and finite interval I =[a,b], but is otherwise unknown. *1

In addition, suppose we wish to find a specific moment of X given by !Q

EIg(X)j fg(x)dFx(x). (3.4)
I

Given the above information, we can only make the obvious conclusion that

E~g(X)] is bounded by the minimum and maximum values that g(x) assumes

for x E a,b j. However, if other moments of X are known, these bounds may

- .~. ~
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be improved by using the theory of moment spaces. The theory is based upon

interpreting an integral inequality as a condition that a specific point lie in a

space determined by the convex hull of a given curve. The following theorem,

originally developed in [23[, formally states this relationship between the

moments of a random variable.

3.4.1. The Moment Space Theorem

Theorem: Let X be a random variable with a probability distribution

function Fx(x) defined over a finite closed interval I = [a,b]. Let

g1 (x), g 2 (x), , gN(x) be a set of N continuous functions defined on I. The

moment of the random variable X induced by the function gi(x) is

m = E[gi(x)] = fgi(x)dFx(x). (3.5)
I

Now denote the moment space Mby

M= {m = (MI, ... MN) E Rfl ,(3.6)

where FX ranges over the set of probability distributions defined on I and RN

denotes N-dimensional Euclidean space. Then Mis a closed, bounded, convex

set. Now let C be the curve r = (r 1 , . . . , rg) traced out in RN by r i = gi(x)

for x in I. Let Hbe the convex hull of C. Then

H = M. (3.7)

In words, the convex hull of all the moment-defining functions traced out in

Euclidean N-space contains all of the moments defined by (3.5) for any

probability distribution Fx(x). For a proof of this theorem, see [23).

Suppose we modify the hypothesis of the moment space theorem by

considering 2-dimensional Euclidean space, removing the restriction that

I=[a,b] is finite, and letting gl(x)=x and g 2 (x) be convex. The resulting

conclusion is Jensen's inequality: g 2 (E[x[) < E(g 2(x)]. By forcing a finite

interval [a,bj for the support of Fx(x), we strengthen this conclusion

considerably by gaining the ability to fully bound the moments defined in

higher dimensional Euclidean space, rather than producing the single

inequality offered by Jensen.

..... ........
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The moment space theorem relates successful data bits to successful

packets in the following way. Let the probability of successful bit

transmission, conditioned on K-1 interfering users in the multiple access

environment, be a function of the relative delays Sk and phases ( k, where

2 - k ' K. Then Q, becomes a random variable expressed as

Qe(,S,) Q Q,(S. S ,2, .., K) (3.8)

with distribution FQ (x). Now let RN - R2 , gl(X) x, and

92(X) = E i (3.9)i 0

A g(x;L,t).

Equation (3.9) corresponds to the mapping of x = Qe(Sunder,l), the

probability of a successful data bit, to g2 (X) = QE(SunderP4, the probability

of a successful packet, given that up to t errors can be corrected within the

packet and that the error events are independent from bit-to-bit. Also, the

first moment

E[Qe(S, b) = Qe (3.10)

may be bounded or closely approximated from techniques presented in

Chapter 2. Once the endpoints of I are found, the theorem can be used to

bound QE, the average probability of packet success. The left endpoint of the

interval represents a lower bound, and the right endpoint represents an upper

bound, on Qe (S,!), the conditional probability of data bit success evaluated

over all possible values of S and ±. If ± is random from bit-to-bit, then the

left and right endpoints of I represent lower and upper bounds on Q,(S)=

EJQ (,S,)I1,Sj evaluated over all possible values of S.

Since the purpose of this discussion is to gain insight into the effect that

dependent bit error events have on packet performance, we will present

examples based upon both light and heavy channel loading with respect to the

MAI present, and under varying amounts of error control capability at the

desired receiver, without attempting to determine the endpoints for I -- a,b

explicitly.
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3.4.2. No Error Correction Capability

Figure 3.1 shows a plot of g(x;L,t) = IL corresponding to a packet of

length L =1000 data bits and no error correcting capability (t =0). We begin

by plotting a hypothetical I = [a,bl on the abscissa. Then we construct the

convex hull between the two points. Since g(x;L,O) is itself convex, the hull is K'

lower bounded by the function itself and upper bounded by the line segment

connecting the points (a,aL) and (b,bL). Next, we plot Qe on the abscissa

and draw a line through the convex hull. Then the ordinate values on the

boundaries of the hull represent the upper and lower bounds on QE. These

values are labeled Qk.u) and Q) in the figure.

We now note an interesting result. The quantity (qe )L is the average

probability of packet success if the data bit error events were independent.

Since g (x; L,O) is convex on [0,1] for 0 <L <c., the independent error event

(memoryless channel) assumption produces a lower bound on the probability of

a successful packet; that is, Q Q)=, )L. This is somewhat surprising, since

error dependency is usually considered "bad" in communications, and yet we

just showed that reliability may improve when the channel has memory.

Recall, however, that we assumed no error correcting capability in the packet,

so a single error results in packet destruction. Therefore, positively correlated

bit-to-bit error events will tend to improve system performance by

concentrating multiple bit errors within a few packets rather than spreading

them uniformly among the packets. There is no analytical reason, then, to

insist on a chip and phase synchronous worst-case assumption to force

independent channel errors in a situation where no error control is used; a

tighter lower bound on packet performance is obtained by simply using-

3.4.3. Light Channel Load with Error Correction %"

Figure 3.2 plots the function g(x;L,t) for a packet of length L =1000

with t = 10, showing possible values for Qkt) and Q ) under light and heavy

channel loading conditions. If the channel has a small number of simultaneous ,'

users relative to the spreading sequence length N and the power of the error

control code, then I = Ja,b will map to a concave part of g (x; L,t ). Now the

situation is opposite to that which occurred with no error control; that is,
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assuming independent error events yields an upper bound on the probability of

packet success, and actual performance may be worse. This makes intuitive

sense by noting that this situation is equivalent to a channel with a small

amount of multiple-access interference relative to the ability of the error

control code to correct errors. Therefore, if the errors that do occur are

distributed uniformly among all packets, the error control code may be able to

recover most or all of the packets transmitted. The situation chmuges when

bit-to-bit error events are positively correlated, since we would now expect a

few more packets to have too many errors for the error control code to handle,

resulting in poorer average performance.

3.4.4. Heavy Channel Load with Error Correction

Under conditions of high MAI (large number of simultaneous users),

I = n,bI may map to a convex part of g(x;L,t), as shown in Figure 3.2. In

this situation, assuming independent bit error events once again produces a

lower bound on packet performance. This is because the bit error rate is so

high that the error control code is overwhelmed, and a large number of

packets are lost. Now the system performs better when the channel has

memory, perhaps producing a few more packets that can be recovered via

error control than would have occurred under memoryless conditions.

3.4.5. Bounds Using the Standard Gaussian Approximation

A similar procedure may be used to estimate packet performance within

the framework of the Standard Gaussian Approximation to the probability of

bit error given by (2.62). Since (2.62) uses SNR, which is directly related to

the MAI variance %P by SNR = pl/v'-, we can map MAI variance to successful

packets through the composition

QE(\l;;Lt) g 1 L,t (3.11)

where

'[Xh = -Q Xl -f e- / 2du . (3.12)

A plot of g(Pp/ '--;L,t) vs IJ for L =1000, t =0, and ,=N=31 is shown in

A'

A,'
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Figure 3.3. Unlike Figure 3.1. the curve is no longer convex in the region of

light channel loading (few simultaneous users); consequently, the quantity

(4[SNRI)L will not produce a lower second moment, bound on the probability

of packet success when no error control is used.

3.5. Probability of Packet Success

We begin this section by referring to (2.34) and (2.35) and noting that if

we condition on the interfering signal delays Sk and, if necessary, the phases

(tk, then the multiple-access interference would be independent from bit-to-bit

within a packet. The independent data bit assumption enables us to use (3.3)

directly to find the (conditional) probability of packet success. If we could do

this for all possible combinations of Sk and +bk for 2 < k < K by finding

QE = g(Q,;L,t) for each Qe(S,I), we would have a collection of conditional

probability of packet success values which could be averaged to find QE-

One possible analytic approach is to divide the interval [0, T/2 1 into M s

equal regions, and the interval [0,7,/21 into M+ equal regions, and calculate Qe

for every possible combination of K-1 users in A'fsM,. regions. (Symmetry

present in (2.34) and (2.35) allows us to examine delays between 0 and T,/2

rather than between 0 and To, and phases between 0 and 7,/2 rather than

between 0 and 2-.) From these results, an approximation to the distribution

of Q,(S,I) is obtained, from which QE =E[g(Q,; L,t)J may be found. The

% disadvantage to this approach is that the number of computations grows as

(MsM+)K- 1, which quickly becomes intractable, even for modest values of K

and MsM +. Instead, we take a second moment approach which does not

exhibit an exponential growth in computational complexity.

In Chapter 2, we developed the Improved Gaussian Approximation by

conditioning on the delay vector S and phase vector 1, and we showed that

the resulting probability of data bit error after averaging over S and I was a

close approximation to the actual P, = 1-Qe found by the bounding

procedure. Since conditioning on S and I also causes bit error events to

become independent, the Improved Gaussian Approximation provides the

ability to accurately calculate the probability of packet success while
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accounting for the effects of bit-to-bit error dependence.

3.5.1. Fixed Delay and Phase

In this section we assume thn all transmitted carriers are phase stable;

that is, each phase 4k is selected ;'rom a distribution uniform on 10,2rl at the

start of a desired packet, and then remains constant over the duration of the

transmission. The delays 3 k are sciected from distributions uniform on [0,11 at

the beginning of a desired packet, and also remain constant during the

transmission. By following the same line of reasoning as that used in Section

2.7, we see that each outcome 1P=0 of the MAI variance is produced by

specific outcomes of S, ±, and B, so we can use ([N/V' as an accurate

approximation to Qe(?P) for a particular ?P. Furthermore, since channel errors

are now conditionally independent, g(Q,(V);L,t) is also an accurate estimate

of the packet success probability QE('b). We now realize that much of the

work required for finding QE=E QE(kV)] has already been accomplished in

Chapter 2: since (2.85) gives the density function for the MAI variance for

any particular K, we have

E;g t+-N 1; L ;L,t IfV(x)dx. (3.13)
QE f (.3

0g

Perhaps the easiest method of computing (3.13) is to use the discrete

density f,(i) given by (2.81) and sum over the composition; thus

I +
QE = \g , N ; L,t jf,(i), (3.14)

where

I =(K-1)(NM-1) (3.15)

and

y() - +K-1 (3.16)
2M

A plot of QE vs K for N-31 and L = 1000 is shown as the solid line in Figure

3.4 for t -0 and in Figure 3.5 for t =10.

.
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We can also obtain a discrete approximation fQ,(J) to the distribution of

the prbability of' packet success by using the following procedure. First, note

that QE is a probability measure; as such, the support of the density function

fQ (x) is [0,1]. We divide this interval into J subintervals, each of length

1/J, and let

_. Pr < QE <-j+ E , . ..J-1 . (3.17)

Next, we let

Ai z i: < g N 1 ; L,t _ j ; 3.8

S0, 1,. }.

Then

fQ, = U) f *E ) (3.19)
iEA

Knowing an approximation to fQ,(x) may prove useful in calculating the

distribution of packet delay in a communication network, since the
ccprobability" that QE is at or below a certain value x E [0,1] is approximately

f Q,(. (3.20)
j5 Jz

Figure 3.6 shows the distribution of QE for N=31 and various values of K.

In Section 2.7 it was pointed out that each outcome WP = 0 is produced by

specific outcomes of S, 1, and B. As a consequence, the value for QE given

by (3.13) is based upon the assumption that C (and hence B) is selected from

its distribution given by (2.33) at the start of each desired packet, and then

remains constant over the duration of the packet. If C varies within a single

desired packet, then we can find bounds on QE by using the following

procedure. First, note that for any fixed S =a and ±==2, if B <_B 2 then

0kIB2 <4VB 1 . Since QE(V))=g(+ [N//V-i];L,t) is a decreasing composition of

0, we conclude that QEIB1i QEIB,. This allows us to obtain bounds, in the

context of the Improved Gaussian Approximation, on the probability of packet
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success for any desired signature sequence structure. For example, if a desired

packet has a B =Bd which varies from bit-to-bit between a minimum BL and

a maximum Bu, then QEIBL QEIBd QEIBU

We now explore the possibility of using less accurate (but easier to

calculate) methods of finding QE, and we compare the results with those given

by (3.13) for various values of K. One approach, for example, is to assume

that all interfering signals are in chip and phase alignment with the desired

signal. Not only does this situation provide independent bit error events, but

also results in a worst-case multiple-access interference situation when all

signals have equal power at the desired receiver [71. We also know from

Section 2.6 that the Standard Gaussian Approximation is accurate for fixed

delays and phases, so the probability of packet success under these conditions

is given by

NP _ _ 1 ~ (3.21)V- E[4 IS -o,± =olI

=g b N ;L,t.

Since the expectation can be expressed as a simple function of N and K,

computational complexity of (3.21) is very low; however, Figures 3.4 and 3.5

show that this worst-case situation produces a very loose lower bound on

packet performance.

A method which retains the low computational complexity of (3.21) while

producing results closer to those given by (3.13) is to use the average SNR

from (2.61) in a Standard Gaussian Approximation to the probability of

packet success. If bit-to-bit error dependencies are also ignored, we have

W r
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g N ; Lt (3.22)

=g 3N } Y2]I'; I~}

Figure 2.2 showed that the Standard Gaussian Approximation yielded results

that were optimistic for small K and accurate for large K. Also, from Figure

3.3 we see that g(4fPt/Nf-'vx;L,O) begins as a concave function of x for small x,

and then becomes convex when x is large. (The curve has a similar shape for

t >0). We conclude from the theory of moment spaces that (3.22) will

probably produce an optimistic estimate of packet success for a lightly-loaded

channel and then become pessimistic as the MAI increases. This effect is

shown in Figures 3.4 and 3.5.

As a third and final alternate method of calculating packet performance,

we may wish to use the Improved Gaussian Approximation to produce

accurate Qe values, but again ignore bit-to-bit error dependence and estimate

QE by

g E [[ 1j; Lt . (3.23)

The convexity of g(x;L,O) in Figure 3.1 allows us to use (3.23) as a lower

bound on packet performance, as shown in Figure 3.4, when there is no error

correction capability. However, g(x;L,t) for t >0 becomes concave as x

approaches 1 (Figure 3.2); as a consequence, when error correction is used,

(3.23) will be optimistic for small K and pessimistic for large K (Figure 3.5).

An additional characteristic of bit-to-bit error dependence and its effect on

packet performance is a more gradual roll-off of the curve given by QE

compared to Q 2) and ) This may reduce the accuracy of using a

"noiseless-useless" channel approximation [141, where all packets are assumed

successful if X or fewer users transmit simultaneously, otherwise all packets

are considered lost.

AV
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3.5.2. Fixed Delay, Random Phase

In certain situations, phase jitter from transmitter instability or changing

channel characteristics may allow us to average the phase of each interfering

signal over its distribution at the bit level within a desired packet. The

probability of packet success becomes

QE = E [g(x; L,t)], (3.24)

where

x-- EV[Q f [ 1 Is (x)dz (3.25)
0

The random variable x in (3.25) is obtained by averaging the probability of

data bit success over the phase vector 1, and is therefore a function of the

delay vector S. Next, g(x;L,t) is averaged over S in (3.24) to determine the

probability of packet success. Directly evaluating (3.25) is difficult, however,

since we need to know the conditional density fpl (x). Since an

approximation to f *(x) is calculated in Section 2.7.2 by performing discrete

convolutions on fZB(i), we cannot express f *,S(x) as a simple function of S

and x. Instead, we are forced to use the procedure described in the

introduction to Section 3.5, where we divide the delay interval [0, T /2] = [0,'/2]

into Ms equal regions and calculate a specific f l4,1 (i) for every possible

combination of K-1 users in M s regions. In order to avoid the exponential (in

K) computational complexity associated with such a task, we will be content

to find upper and lower bounds on QE when no error correction capability

exists, and an approximation to GE otherwise.

If no error correction is used by the system, then we know that the

function g(x;L,O)=XL is convex for x E[0,1[, and Jensen's inequality (Section

3.4) allows us to write

-g tE[x] ; L,01 < E [g(x; L,0)] E (3.26)

where x is a random variable given by (3.25). However,

g IE~X[; L,0 (3.27)

from (3.23). Therefore, a lower bound Q J)on (3.24) may be found by ignoring
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the effect of bit-to-bit error dependence altogether. An upper bound on (3.24)

is produced by once again using Jensen's inequality to give

g [E [Q, IS]; L,0J : E [9(Qe ; L,0)IS ]_ (3.28)

Note that both sides of (3.28) are random variables; taking an expectation of

each side preserves the inequality 124):

QE =E [g(x;L,o) E (g(Qe;L,O)]=Qpu. (3.29)

But

E [g(Qe L,0)] = QE (3.30)

from (3.13). Consequently, the probability of packet success with random

interfering signal phases is upper bounded by assuming that the interfering

signals have constant delays and phases throughout a desired packet. These

bounds are plotted in Figure 3.7; note that they are reasonably tight when the

probability of packet success is high, which is the performance region of

greatest interest to a systems designer.

The upper and lower bounds given by (3.26) and (3.29) have two

disadvantages: they cannot be made arbitrarily tight and, since g(x;L,t) is

no longer convex when t >0, they cannot be used as bounds when error

correction capability exists. We can, however, loosely lower-bound QE by

allowing all interfering signals to be in worst-case chip alignment with the

desired signal, and we can approximate QE by averaging the MAI variance

over all possible interfering signal delays.

The lower bound on QE is easily obtained by using the Standard

Gaussian Approximation where interfering signals have random phases and

chip boundary alignment. In this case,

g - N 1; Q) (3.31)

=gNE ;Lt
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from (2.65). To approximate QE we can substitute EjUI = I into (2-5), giving

Z' =V, which represents a phase-averaged MAI value produccd by one

interfering signal as a function of its delay S. The density of Z' is given by

(2.81) which integrates to form

FZ'IB(V) = b 2 -N 1/2 N-B < v < (3.32)

fv3- 1 <V - - . (332

The distribution of the total MAI variance q/ is found using the techniques of

Section 2.7, producing a probability of packet success

=E g ( N, l 1; L,tj . (3.33)

A plot of Ol) and 2) as a function of K for N=31, L = 1000, and t =10

shown in Figure 3.8.

3.6. Conclusion

From the results in this chapter, it is evident that the multiple-access

interference cannot be modeled as a process producing values which are

independent from bit-to-bit within a desired packet. The theory of moment

spaces allows us to conclude that the dependent error events present in a

desired packet actually improves performance under all channel traffic

situations when no error control is used, and under heavy channel loading

when error correction is possible. The error dependencies will cause poorer

system performance when the desired packet includes error correction

capability and is transmitted over a lightly-loaded channel. Since this latter

situation is perhaps of greatest interest to a systems designer, the effect of

error dependencies should be incorporated into the analysis to avoid overly

optimistic estimates of network performance. In the next chapter, we examine

the effect of error dependence on the performance of a direct-sequence spread-

spectrum packet broadcast system using the slotted ALOHA protocol.

*1t
iN
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CHAPTER 4

THE NETWORK LAYER:

SLOTTED ALOHA MODEL

4.1. Introduction

The network layer defines how packets of data bits are routed and relayed

between user nodes, and regulates the flow of packets [1]. In Chapter 1 we

discovered that many of the results in the literature concerning DS/SSMA

communications were obtained by simplifying the physical and data link layers

to enable fairly complicated networks to be analyzed. Our approach is just

the opposite: we have endeavored in the last two chapters to produce an

accurate estimate of the probability of data bit error without the inaccuracies

of the Standard Gaussian Approximation, and we incorporated the effects of

dependent bit error events into our estimate of the probability of packet

success. We will now apply these results to a simplified network model to gain

insight into the effect that a more accurate analysis of packet performance has

on the network throughput.

Throughput this chapter, we make use of the "slotted ALOHA" network

model, described in the next section. First, we derive the network throughput

equations for an infinite-user network. and show how arbitrarily tight bounds

on the throughput may be calculated. We then work mainly with the lower

throughput bound and quantify the performance enhancement gained by

incorporating error correction capability into the desired signal. Although

throughput is increased by using error control, the required redundancy

shortens the effective length of the actual message; we take this into account

by calculating a quantity called the "effective throughput". Next, we define

network capacity as the maximum effective throughput, and we compare the

capacity of an infinite-user DS/SSMA slotted ALOHA packet network with a

?
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number of narrow-band networks using an equivalent signal ban 'width.

Much of the effort in this thesis has been devoted to comparing the bit

and packet error performance by using three different approximations in the

calculations. These are, in order of increasing accuracy (and increasing

computational effort), the Standard Gaussian Approximation (SGA) from

equation (3.22), the Improved Gaussian Approximation (iGA) from (3.23), and

the Improved Gaussian Approximation while accounting for bit-to-bit error

dependence (IGA-D) given by (3.13). This chapter will explore the network

performance under each of these three approximations, and will allow systems

designers to decide if the increased accuracy of the IGA and IGA-D methods

are worth the extra effort required over the SGA approach. In order to

provide contrast between the IGA and IGA-D approaches, the IGA-D

calculations are based upon phase stable transmitters, so that there is

dependency from both delay S and phase I parameters between the desired

and interfering signals.

4.2. Infinite User Model

Consider a large number of independent users (nodes) sharing a common

communication channel and generating packets of length L bits. Each of the

n users receives packets at a very slow rate Si packets per time slot, and the

time between packets is exponentially distributed with mean 1!S which is

large relative to the packet length. Then the arrivals of all newly-generated

packets are Poisson !251 with rate
n

S =v S,
z=1

When a packet arrives at a particular node, transmission begins at the

start of the next slot (Figurc 4.1). Each slot is long enough for a packet to be

transmitted, and any associated guard time between slots is assumed short

compared to the packet transmission time. It is also assumed that

propagation delays and slot timing errors are su,'. that the bit and packet

error probabilities developed in the previous sections hold.
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packet network.

A.

!W', ', W',w'% '% . , -' a' ' ' - -- ." '.. ,* 
.

- .- ,l"gd'j." ", . 2w "","".e -,- "€ ., -. ". "'e" w" ," a. we" " W" W" _-. ", u, "d" " " " " ,... p.



68

In the previous chapter, we showed that multiple-access interference from

two or more users in a particular slot could cause a packet error, requiring

retransmission. Figure 4.2 shows this situation from a networking point of

view: the channel receives both newly generated packets at rate S and

previously unsuccessful packets at rate R, also assumed Poisson. The offered

channel traffic is then Poisson with rate G=S+R. Of course, it is hoped that

the channel throughput rate is S, so that all newly arrived packets will

eventually be successfully transmitted. This will occur only if the channel is

stable; that is, if the queue containing unsuccessful packets occasionally

empties [251.

4.3. Network Throughput

The calculation of network throughput gives an indication of system

performance by quantifying the average number of successful packets

transmitted per unit time. Since some of the packets may be received in error,

the throughput is at or below the channel "offered rate", or the average

number of pickets transmitted in the same unit of time. By defining a unit of

time to be equivalent to the duration of a slot, both offered rate and

throughput are specified in "packets per slot". Although K, the number of

simultaneous users in a particular slot, is now a random variable, the relative

probabilities of each value of K E {0, 1,... . are determined by the channel

offered rate G. When G is small, the probability is high that K will also be

small, and the probability of a successful packet will be high. Throughput will

be low because of the low offered rate. On the other hand, if G is large then a

large K is also likely, but since the probability of packet success is now low, S

may still be low. We therefore expect S to be approximately equal to the

offered rate when G is small, reach a peak, and then eventually decrease as G

continues to increase.

We begin our study of network performance by reviewing the derivation

of the throughput equation for a narrow-band slotted ALOHA system, and

then we expand the concept to allow more than one successful packet in a

particular slot.

'. ,...:e
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4.3.1. Derivation of the Throughput Equation

For traditional narrow-band packet broadcast systems (slotted or

unslotted), throughput analysis is usually accomplished by ignoring errors

caused by AWGN at the receiver and assuming a given packet is successful if

and only if no part of it overlaps with another packet during transmission

[25,261. If an overlap (or "collision") does occur, all packets involved

effectively jam each other and are lost. In the slotted ALOHA model with

Poisson packet arrivals, a packet is successful if and only if a slot contains

just. one packet, which occurs with probability e -G. The throughput is the

offered rate times the probability that a single packet will be successful; thus

S = ae-G < 1 (4.1)

When spread-spectrum techniques are used, collisions are no longer

catastrophic; instead, we must account for the degradation of the channel

when two or more users occupy a slot simultaneously. We do this by turning

to conditional probabilities.

Throughput may be viewed as the expected number of successful packets

in a typical slot [13J; as such, we can define SIk as the expected number of

successful packets given k packets in a slot. Therefore

S k ,Ik 1 kr
SIk = >m m [QE(k)[m[1-QE(k)lkm (4.2)

m=1 I

where QE(k) is the average probability of packet success with k total users in

a slot. Since (4.2) is simply the expected value of a binomial distribution, we

have

SIk = k QE(k). (4.3)

After averaging over the Poisson distribution of k, the result becomes

%i

',S

i1~~~*% ~ -
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S= \eG k Gk QE(k) (4.4)

k ='

V e -G Gk
k= (k-1)!

G G k
-- e-C \2- Qz(k+l)-

k=o

In the first two expressions for S in (4.4), the summation index k represents

averaging over the total number of users in a slot; because of the limit change

in the last expression, k now becomes the number of interfering users in a slot.

Also, since QE(k+1) < 1 for all k E )0, 1,2, . . . }, we have

Gk
S < Ge -  V -G (4.5)

k=0

and thus the series in (4.4) converges.

If the first term in the summation of (4.4) is separated from the remaining

terms, we can write

NZ G k

S = Ge -G +Ge -G X$ G QE(k+1). (4.6)
k=i

The term Ge-G represents the throughput when there is only one packet in a

slot, which is identical to the throughput in a narrow-band slotted ALOHA

channel given by (4.1). The remaining terms in (4.6) represent the additional

throughput realized by using direct sequence spread-spectrum techniques.

4.3.2. Throughput Bounds

An exact evaluation of (4.4) is not possible because of the infinite sum,

but we can use the fact that QE(k) is a decreasing function of k to obtain

arbitrarily tight upper and lower bounds on S. For example, the series may

be lower bounded by simply truncating it after QE(k+1) reaches some

arbitrary minimum value; call it QE(Ku):

K -I Gk r
S')oG- V QE(k+1). (4.7)

k=O k

Similarly, S may be upper bounded by letting QE(k)-QE(K ) for all k -K_,

4;

U d/9~'~5 *.%
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giving

S(u) = Ge- \-- QE(k+l) + GeG -  E(tu) (4.8)
K_ k k= k=K,

= S(') + QE(Ku)Ge
- G Gk

k=K , •

G -G-V
-S

(/) + QE(Ku) 4 GeGK---~k=O k!"

It follows from (4.7) and (4.8) that

S E(K)G-Ge Y . (4.9)S~u) S(1 = QE(K.)k=O k

The quantity S(u)- S (l) represents the relative tightness of the bounds, and is

shown in Figure 4.3 for various values of QE(Ku) when using the Standard

Gaussian Approximation for QE(k). Although the difference between S(u) and

S(l) increases with G, a proper choice for QE(Ku) will insure tight bounds for

all reasonable values of G. To avoid excessively busy plots by showing both

bounds, we will instead use only S(l) with QE(KU)< IO- 3 for most of the

throughput results in this chapter.

We can now compare the SGA, IGA, and IGA-D methods of calculating

the probability of packet success in the network throughput equation. Figure

4.4 shows these three methods when there is no error correction capability in

the desired packet. In Chapter 3 we discovered that the IGA-D method

produces the most accurate results, but it is lower bounded by using the

Improved Gaussian Approximation while ignoring the effect of bit-to-bit error

dependence. This bound also manifests itself in the throughput curve; indeed,

the bound is quite pessimistic under heavy channel loading (high offered rates).

On the other hand, the SGA analysis technique gives optimistic throughput

values under low offered rates and pessimistic values when G is high.
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4.4. Packet Error Control and Network Throughput

In traditional narrow-band packet system analysis 1121, packets are

usually assumed to possess some form of error control, so that only error-free

data is "accepted" by the receiver. Error control (error detection) allows the

receiver to identify packets which have been involved in a collision and reject

the packets accordingly. Traditional analysis still assumes a noiseless channel,

so that a packet not involved in a collision will be received correctly with

probability 1. Conversely, if two or more narrow-band transmitters operate

simultaneously, the communication channel is considered useless during this

time; consequently, no amount of error control (error correction) will recover

the affected packets, which are then assumed lost.

As shown in the preceding chapters, multiple-access interference in a

spread-spectrum communications system can be modeled as additive channel

noise; as a result, we can no longer assume that successful packels were

transmitted across a noiseless channel. But, at the expense of additional

signal bandwidth, we no longer have the unfortunate consequence of a useless

channel when two or more transmitters occupy a single time slot. We can

conclude, then, that most packets adversely affected by multiple-access

interference were not totally destroyed from transmission across a useless

channel, but merely contain a few bit errors here and there which can be

corrected by an appropriate error control code.

Figure 4.5 shows the effect on network throughput when a packet of

length L = 1000 bits can have up to 10 errors corrected at the destination

node. Although the throughput in "packets per slot" increases over the case

where t =0, the redundancy added by the error control code means that each

packet has fewer than L information bits in it, with a corresponding reduction

in actual data throughput. We can account for this data reduction per packet

by defining a quantity called the effective throughput and using it in

throughput calculations when t >0.
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4.4.1. Effective Throughput: Upper Bound

Suppose M message bits are to be encoded with a block error control code

into a packet of length L bits, where M<L. Then the quantity L-M

represents the redundancy added to the information to gain some form of error

correction capability. It is logical to assume that a higher redundancy results

in the ability to correct more bit errors in the packet at the cost ol" having

fewer message bits within the packet; this fact is quantified in the Hamming

bound [271, which states that to correct t errors in a block of length L bits,

the number of message bits M within the block is upper bounded by

M<: L -[D] (4.10)

where

102D (4.11)

The quantity M/L is defined as the rate R, of the code, which is simply the

fraction of the packet devoted to the message.

Since each packet of length L bits now contains only M < L bits of actual

data, we can define the effective throughput T as

SM S(IL -[D]J
T = SRC < (4.12)L - L

where the units for T are "data blocks per slot". Obviously, S -, T with

equality when t =0. Note that T is just the number of equivalent packets of

L message bits required to obtain the same information throughput as S

packets of M message bits and L -M additional bits for error control.

Equations (4.10) and (4.12) are met with equality if and only if the error

control code employed is a perfect code, defined in [27]. Such a code, however,

may not exist for arbitrary L and M.

Actual computations are hindered when (4.12) is used directly because IL!

is large for reasonable values of L and t" for example, 0 - lOs. The

Appendix shows a way to directly calculate a lower bound on D, yielding the

following result:
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T < (4.13)
L

where

C(L,t) =(L+/2)10g2(L)-(t+V2)log2(t)-(L -t+/2)10g 2(L-t) (4.14)

-+ (12L +1)- 1 _ /21og2(27,) -(12t -1_12(L -t )-1

4.4.2. Effective Throughput: Lower Bound

Obtaining a lower bound on T is slightly more involved. First, we must

relate S to T by finding a minimum performance limit on block codes in

general; then using (4.7) as a lower bound on the packet throughput S for a

given G will produce a lower bound on the effective throughput T. We begin

by stating the Gilbert-Varsharrnov lower bound on block code performance 271.

Consider a block code of arbitrary length L. The minimum distance dm

is the smallest Hamming distance between any two codewords in the code. It

follows that the Hamming distance is related to the maximum number of

errors that the code is guaranteed to correct by the formula

dm = 2t +1. (4.15)

For a code that is not a perfect code, some codewords will still decode

correctly even though they may contain more than t errors; however, all

codewords with t or fewer bit errors will decode into the correct information

word. It can be shown [281 that binary block codes exist which have a

normalized minimum distance that satisfies

dm
> A (4.16)

where A and the code rate R C are related by

R c - 1 +Alog 2A +(1-A)log 2 (1-A); 0<A <'/2. (4.17)

Equations (4.16) and (4.17) represent the Gilbert-Varsharmov bound, where A

is plotted as a function of R, in Figure 4.6.

Now we are in a position to determine a lower bound on the effective

throughput T as a function of channel offered rate G for a given packet

.11
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length L, signature sequence length N, and error correction performance I.

First, we use (4.7) to lower bound S as a function of G. Next, (4.15) finds dm

for the desired I. Although the quantity A in (4.17) is usually treated as a

(decreasing) function of Re, the mapping is one-to-one, so we can also treat R,

as a decreasing function of A. Substituting (4.15) and (4.16) into (4.17), we

have

7' = SRC > S [+Alog2A +(1 10o 2 (1-A (4.18)

where

- 2t +1
L

Since we are guaranteed that at least t errors can be corrected with our code

(some subset of the collection of codewords may do better), the values for

QE(k) used in (4.7) will lower bound S directly by assuming that a maxzmum

of t errors can be corrected by any codeword.

At this point we are not yet certain whether the addition of error

correcting capability to the packets will increase or decrease the effective

throughput of the network. Increasing t will increase the average number of

successful packets in a slot given that K packets are transmitted, but each

packet now contains fewer information bits. Figure 4.7 shows a comparison of

the lower bound on T, which we call T ( ) , vs G for various values of t. (For

t=0, we set T - S().) Note that as t increases, the peak effective

throughput exceeds that of a system with larger N and no error correction

capability, but without the additional bandwidth penalty incurred by

increasing N. However, since the addition of error control reduces the portion

of a packet which is devoted to the message, we see that as t increases for a

given N, the effective throughput curve peaks more slowly. For example, if

G =5 and N=31, then a network of packets using t =5 produces a higher

effective throughput than that given by the more powerful I =_0 error control

C:ode. -ks a consequence, if the offered ,ate is low. then increasing the error

correcting capability for each node in the network actually reduices the

effective throughput. As the offered rate increases, however, the situation

eventuallv reverses and the more powerful error control code prodices the

greater effective throughput.

%,
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If we plot the peaks of the effective throughput curves in Figure 4.7 as a

function of t, the result is the solid line in Figure 4.8. The dotted line in the

Figure is a plot of the actual throughput S(l); as t increases, the corresponding

reduction in actual information carried by each packet widens the difference

between S(1) and T (O). The peak throughput is related to the network

capacity, which we define in the next section.

4.5. Network Capacity

When designing a packet communications system, determining network

capacity (maximum effective throughput) is an important consideration to

avoid instability from an offered rate which exceeds the traffic-handling

capability of the channel. In fact, if network capacity greatly exceeds the

required throughput, the network's retransmission policy becomes less

important to system stability. Figure 4.9 shows this in more detail. Suppose

for a given network the required effective throughput is T o. The capacity of

scheme A barely exceeds TD, and therefore the retransmission rate R must be

carefully regulated so that G =S+R falls within the interval a to avoid

operating in the unstable region above the curve. Scheme B has a capacity

exceeding T o by a greater amount, allowing much more variation in the

packet retransmission rate (interval b) before instability results.

4.5.1. Effect of Error Control and Sequence Length

In the last section we calculated a lower bound on the effective

throughput, which we called T (l), and used it to examine the effect of error

control on network performance. For notational consistency, we define

network capacity T c as the maximum value for T(11; that is, Tc - suptT ')}.

Plots of the network capacity as a function of N for the SGA. IGA, and IGA-

D analysis methods are given in Figure 4.10. When t =0, using the IGA

method without accounting for bit-to-bit error dependencies gives a slightly

pessimistic result for Tc for all values of N, which is consistent with the bit

and packet error performance given in Chapters 2 and 3. However, as N

increases with t >0, the SGA and IGA methods produce results that are

I,
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slightly optimistic compared to those from the IGA-D procedure.

It is also interesting to examine the effect that error control alone has on

Tc. Figure 4.11 shows Tc as a function of t for fixed N and L. Note that a

small amount of error correction capability increases effective throughput at

capacity substantially; then the improvement settles to a fairly linear function

of t as t increases further. Also, the SCA and IGA methods seem to converge

to the same value for Tc as t increases. This is because higher error control

capability means that network capacity occurs at a larger offered rate G. As

the offered rate becomes large, the probability that K is small is also small.

We discovered in Chapter 2 that the SGA and IGA converge to the same

values for the probability of data bit error as K increases for fixed N, so it is

reasonable to expect that the packet success rates and network effective

throughput performance will become identical as well. One of the main

advantages of error control is that added throughput is realized without a

corresponding increase in signal bandwidth. Given adequate error control,

then, one may wonder if the capacity of a DS/SSMA packet network compares

favorably to that of an ordinary narrow-band slotted ALOHA packet network

with respect to bandwidth efficiency. This issue is addressed in the next

section.

4.5.2. Throughput/Bandwidth Comparisons

The advantages of using spread-spectrum in a packet radio system must

be compared to the cost of this signaling technique in terms of increased

bandwidth. It is certainly apparent from results in this chapter that the

throughput at channel capacity of a direct-sequence spread-spectrum slotted

packet network is high because multiple packets can be successfully

transmitted in a single slot. However, to gain insight into whether spread-

spectrum signaling really offers any throughput advantage over narrow-band

signals, we must normalize the throughput by the signal bandwidth; this will

enable us to compare the performance of a single spread-spectrum system to a

number of narrow-band networks with the same total bandwidth. In order to

avoid arbitrary cutoff limits on the (theoretically infinite) bandwidths of the

signals in question, we note that N, the number of chips per data bit in the

spectral-spreading signal, is also approximately the ratio of the bandwidth of
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the spread-spectrum signal to that of the narrow-band signal.

The network capacity of a narrow-band slotted ALOHA system can be

found by taking the derivative of (4.1) with respect to G and setting the result

to zero, giving

d -G(1-G) 0 (4.20)dG

thus maximum throughput of S =l/e 2 0.368 is produced at an offered rate

of G = 1. We now define the capacity/bandwidth factor ,5 by

eTC (4.21)

N

which is the ratio of the maximum effective data throughput of the spread-

spectrum packet system to the data capacity of N narrow-band slotted

ALOHA packet networks. Using the results derived in the previous sections,

we can find values of 3 for various values for N and t (Figure 4.12). It is

apparent that a direct-sequence spread-spectrum packet system with no error

control makes poorer use of channel bandwidth for a particular T0 than using

N narrow-band slotted ALOHA systems. However, when a sufficient amount

of error control is employed to correct some of the packet errors caused by

multiple-access interference, the network capacity increases beyond that of N

narrow-band systems.t

"5

4.6. Conclusion
J,5

By allowing the total number of users K to become a random variable
with a Poisson distribution, we can derive arbitrarily tight bounds on the

network throughput of a slotted ALOHA packet system using DS/SSMA

signaling. Since each slot can carry more than one packet successfully, the

throughput measured in "packets per slot" can exceed unity at the expense of

a greater transmission bandwidth compared to ordinary narrow-band phase-

Under our assumption of a useless channel during narrow-band collisions, slotted
ALOHA systems under traditional analysis will not i.alize any additional throughput
from error correction.
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shift keying techniques. When no error control is used, the IGA method

(Improved Gaussian Approximation without accounting for bit-to-bit error
dependencies) produces a lower bound on the throughput of the network

obtained with the IGA-D (Improved Gaussian Approximation incorporating

error dependencies) technique. The SGA (Standard Gaussian Approximation)
method is easy to calculate and has lower compatational complexity than the
other two methods, but provides only an approximation to the actual

throughput. If the bit-to-bit error events were truly independent, then the

SGA approach is quite optimistic over most of the throughput curve shown in

Figure 4.4.

When error correction capability is incorporated into the packets, then

the IGA technique no longer lower-bounds the IGA-D results (Figure 4.5).

Also, since error control adds redundancy to the data in a packet, the
throughput S is no longer an accurate indication of network performance.

Instead, we must account for the reduction in packet data by using the

effective throughput T, which is the average number of packets consisting

entirely of information bits corresponding to S packets comprised of fewer
information bits coupled with an error control code. By using the Gilbert-

Varsharmov lower bound on block error control code performance, we can

calculated a lower bound on T.

Tht capacity of a network, which we define as the maximum effective
throughput, is an important design criterion. For example, if we insure that

the network capacity is significantly higher than the required effective

throughput, then the retransmission rate associated with failed packets can

fall between two widely-spaced limits. We can also compare the capacity of
the DS/SSMA packet network to that of N narrow-band slotted ALOHA

systems which occupy the same bandwidth. When no error control is used,

DS/SSMA is only about half as efficient as the (relatively inefficient) narrow-
band signals, but as the error control code becomes more powerful, the
capacity/bandwidth factor of the wide-band signaling technique eventually

exceeds that of N narrow-band networks.
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CHAPTER 5

CONCLUSIONS

5.1. Summary of Results

In Chapter 2, we compared bounds on the probability of data bit error in

a direct-sequence spread-spectrum multiple-access communication system with

random signature sequences to the results gi,,en by the Standard Gaussian

Approximation. Although it is tempting to use this approximation for all bit

error rate calculations because of its simplicity, we discovered that under some K

conditions the approximation is inaccurate. Specifically, if the relative delays

and phases of the interfering signals are random, then the Standard Gaussian

Approximation produces optimistic estimates of the bit error rate when K, the

number of simultaneous transmitters, is small and the bit error rate is

relatively low. If the interfering signal delays and phases are fixed, however,

then the Standard Gaussian Approximation is quite accurate for all values of

K. By finding the distribution of the multiple-access interference variance

over all possible delay and phase values, we can use the Gaussian

approximation over the support of the distribution and average the results for

a much more accurate representation of the probability of data bit error. This

technique, called the Improved Gaussian Approximation, also allows us to

account for the bit-to-bit error dependencies produced by the relative constant

delays and (possibly) phases of the interfering signals over the transmission

time of a desired packet.

The effect of bit-to-bit error dependence on the probability of a successful

packet is analyzed in Chapter 3. If no error control is used, then error

dependence improves average packet performance by concentrating the bit

errors that do occur within a few packets, increasing the number of packets

that are error-free. When error control is employed and the channel is lightly

,.
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loaded, then performance diminishes when bit error dependencies exist, since

concentrating multiple bit errors within a few packets may exceed the

capability of the error control code to correct those errors. If the channel is

heavily loaded, then performance improves when there is bit-to-bit error

dependence. In this situation, some packets are effectively sacrificed by

receiving many more than their share of errors, while other packets now have

far fewer than the average number of errors and can thus be rescued via error

control.

The results in Chapter 4 show that a slotted direct-sequence spread-

spectrum packet radio network possesses a significant throughput advantage

over that of an equivalent narrow-band ALOHA system; and, provided a

reasonable amount of error control is used to further combat multiple-access

interference, the throughput per unit bandwidth is also higher. We conclude

that the advantages of the direct-sequence spread-spectrum signaling

technique in terms of multipath resolution, multiple-access capability, and

communications security, along with increased bandwidth efficiency over that

of a conventional narrow-band slotted ALOHA network, may be obtained at

the expense of a more complicated transmitter and receiver design.

5.2. Future Research

Following the structure of this thesis, there are a number of exciting

topics to be worked in the physical, data link, and network layers to gain

further insight into the general performance of a spread-spectrum multiple-

access packet network.

The physical layer provides the foundation for any communication

network, so accurate analysis here is essential for obtaining correct values for

packet success and network throughput. We have concentrated on DS/SSMA
signaling using rectangular signature sequence pulses with phase-shift keying

and coherent detection. Non-coherent detectors are usually cheaper and less

complicated, and other chip pulse shapes (such as the raised sine pulse) may
increase bandwidth efficiency. The near-far problem, where a strong

interfering signal prevents the reception of a weaker desired signal, is an

-
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important consideration in finding the probability of data bit error, but

incorporating different signal amplitudes into the results requires some

knowledge of the topology of the network being analyzed.

Bit-to-bit error dependence effects are more difficult to analyze if the

interfering signals have signature sequences that repeat at the beginning of

each data bit, since there are now additional dependencies associated with the

particular signature sequence patterns. One of the remaining challenges at

the data link layer, then, is to work this problem without (hopefully)

producing expressions that are of exponential computational complexity. Like

the near-far problem, the analysis of specific signature sequences assigned to

specific nodes requires a knowledge of the network topology.

At the network layer, we have shown that it is possible to obtain accurate

results for network throughput while avoiding many of the crude

approximations sometimes used at the physical and data link layers.

Additional work is required to produce accurate throughput results when the
network is unslotted. The unslotted network is much easier to implement,

since we avoid the difficult task of providing a means to time-synchronize a

number of independent noaes. In narrow-band signaling, one motivation for

providing time slots in an ALOHA scheme was a doubling of network capacity

over the unslotted case [121, but because of the multiple-access nature of

spread-spectrum, it is not clear what effect the lack of time slotting will have

on network throughput under this signaling scheme. It is obvious, however,

that the unslotted case is more difficult to analyze.

% Throughput may be considered as a "macroscopic" measure of the

performance of a specific packet network; at the "microscopic" level a

designer may need to know the average delay (or its distribution) required for

a specific packet to reach its destination. Indeed, there are many applications

(such as industrial robot control and digitized voice transmission) where

minimizing packet delay is an extremely important design criterion. Future
work should therefore concentrate on developing a method for finding the

distribution of packet delay in a spread-spectrum multiple-access network.

As a final note, we briefly compare the frequency-hopped (FH) method of

spread-spectrum signaling to the direct-sequence (DS) technique. Since FH

avoids interference from other users by changing the actual r-f carrier

%'
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frequency according to some pseudo-random pattern, there arc no bit-to-bit

error dependencies to influence performance. Also, the near-far effect is

reduced because of the isolation provided by the different frequency slots.

Frequency synthesizer design factors place a limit on the hopping rate of a FH

system, however, so the DS method with a short chip duration provides

superior multipath rejection. Eventually, however, the hopping rate of

synthesizers may be fast enough to combat multipath interference by allowing

the receiver to change frequency before the arrival of multipath components in

a specific frequency slot.
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Appendix

A.1. Derivation of (2.81)

Given the random variable S which is uniform on 0,11, we wish to find

the distribution of

V = (2B±1,)(S 2 -S) +-N (A. 1.1)
2

We begin by finding the density function of X =S , aIs follo)ws. From 1291,
for X =g (S) qua~dratic in S the density of X is

f X( =f S(S 1) + f S(S2)(A1.2
1 Ig'(s1)I 1 g'(s2)1 A12

where s, and s82 are the solutions to g(s)-x =0 and g'(s,) is the first

* (derivative of g(s) evaluated at si. Substituting

S12= 1 V+x(A. 1. 3)
2

along with g'(s)=2s -1, into (A. 1.2) gives

f X(X) - 2 < X 0. (A.1.4)
1+4x 4

We now note that the random variable V in (A.1.1) is of the form

V = aX+ b , where a and b are constants; therefore

1 a Iv- a

Finally, substituting a =2B+1 and b =N12 into (A.1.5) gives, for a specific 13,

1N-B N
f V(V) < V < (A. 1.6)

VB(2v+13-N)22

where B B +1/.
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A.2. Derivation of (2.82)

The random variable Z = UV is the product of two independent random

variables; as such, we have (211

fZ(Z) = fT fu zf VV(v)dv (A.2.1)

where

1

fu(u) = -; O<u <2 (A.2.2)

and, for a particular B, f v(v) is given by (A.1.5).

The quantity inside the integral in (A.2.1) is the joint density of Z and V;

i.e.

fzv(zv)- fu - fv(V), (A.2.3)

which, after substituting the appropriate values from (A.1.6) and (A.2.2),

becomes

fzv(zv)- 2:,/I v/-b+c (A.2.4)

where

b -- +z (A.2.5)

2

and

C = z(N-B) (A.2.6)

4

From a standard table of integrals, we find that

f dv = log [2v -b +2,v 2 _bv+c (A.2.7)f /v,2bv, +c

where log =log,.

To determine the limits of integration in (A.2.1) we must find the support

of fzv(zv). We know that 0<U <2 and (N-B)/2<V <N/2, so Z=UV

is the product of two positive numbers and 0 < Z < N. If we let U vary

N N ' %' * ' 1 ' A%.
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between 0 and 2, then for V = (N-B )/2 we have 0 < Z <N-3 and for

V =N/2 we have 0<Z <N. If U =0, then Z =0 for all V, and if U =2 then

Z =2V for all V. We have thus completely defined the boundaries of the

support for fzv(z,v), which are shown in Figure A.I. Now the integral in

(A.2.1) may be split into two parts, giving

N12

f fz,v(z,v)dv; 0<z<N-B

2

f z(z) = (A.2.8)

N/2

f fzv(z,v)dv; N-Bh<z<N
z12

After substituting the appropriate values for b and c into the top integral

in (A.2.8), we obtain for 0 < z < N-B

1 (N-z) + 2/ -- +

f Z(Z) =log (.292-, V - z ( N- z) - B

S o N-z + V8 NV-Z +V

2, V =-z'o g ,, -z+V-7 VN--

X/N-z +V-- -z-

Similarly, the lower integral in (A.2.8) evaluates as

SZ(Z) log - ] (A.2.o) 0
27 VBz V[V - - p.:

for N-B <z <N. Finally, combining (A.2.9) and (A.2.10) yields

fz(z)-- 2 / - zlog N-z -" - 0<z<N. (A.2.11)

~r
f Z ( Z ) -5
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Figure A.1. Support of fzv(zv).
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A.3. Derivation of (2.84)

To obtain the cumulative distribution function of the random variable Z

for a particular B, we integrate (A.2.11) directly, remembering to find an

appropriate constant of integration to produce a valid distribution function.

First, we restrict z to be between 0 and N-B and we separate the log terms

in (A.2.1 1) to produce

Fz • (Z- f -- log [V--z + V dz (A.3.1)

- f --_zz log [v/,N-z -%/B ] dz

The two integrals in (A.3.1) will be called (1) and (2), respectively. Next, for z

between N-B and V, we have

Fz(z) - ,. -log [VN-z +N/B dz (A.3.2)

f i7loVB( .2

-fv log [Vz -N ,-z dz

The first integral in (A.3.2) is identical to integral (1), and we call the second

integral (3).

The following integral from a standard table of integrals will prove useful.

If we let X = N -3 ± 2\%'Bx - x2 then

f---X =VX %1B sin-'[ 1 (A.3.3)
X

" 2 V(N-h)X N\IB/- +NV-i1:
- N-B log

Integral (1): Performing a change of variable by letting zN-y we

obtain

.5

.1

-w,€,y. ~ ~ .f~m . v,'
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Integrating by parts with

u "iN-y 2  , u -y dy (A. 3.5)VNy2

and

V = log y+%/P dv dy (A.3.6)

produces

2(1) = N-y 2 log [ y+\/7Bjf -2 dy. (A. 3.7)

If we let y = 3 -:-V in the integral in (A.3.7), which we call integral (A), we

have

(A) =f dx (A.3.s)

f x
x -

which is given by (A.3.3) for X=N-B +2VBx We now back-substitute

z =y+V\/- into (A), substitute (A) into (A.3.7), and then back-substitute
N-y 2 , which gives

V()=Xz(log [vB ± j-1i (A. 3. 0)
2

p. [ _ _ _ _ _

%1 B sin _ Z 
'
12

N

2 z-)z + B (N- z)+
+ V v - lo g .5,V.V-z + \f:

~ ~ aa~Ia .. ~ ~'~j'p ~ p. ~ ~ ~ a ~ja~ \a *
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Integral (2): The procedure for evaluating integral (2) is identical (except

for sign changes) to that used for integral (1) through the integration by parts,

producing

(2) = N-y 2 log dy. (A.3.10)

After a change of variables, evaluating the integral in (A.3.10) by using

(A.3.3), and back-substituting, we obtain

-(2)=/; log N--/z -1 (A.3.11)
2 ~

+\%'B sin- v-

2 _ _ _ 1 V(A~ =(I 7

+ VN fi log NN'\IN-z- -%1B

Integral (3): While carefully monitoring sign changes, integral (3) is

evaluated by using a procedure of integrating by parts, applying (A.3.3), and

back substituting, which gives

-(3) = z /IIlog [r VNz-1(A.3.12)

+ VLsin I I-
[N1

p,

(-.B: -/-

Now we can assemble integrals (1), (2), and (3) into (A.3.1) and (A.3.2) to

obtain

'p

,.|
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Fz (z) 12 1 1 (A. 3.13)
1 2 -(1)- () C; 0N-V < zN</

where C is a constant of integration. To evaluate C, note that

Fz(O)=- +C which implies that C =1. Finally, by substituting the actual

values for integrals (1), (2), and (3) into (A.3.13) we have, for a specific B,

1 1 6 N-/ ogba 2"±c2

Fz(z) 1 + - lg 2a+c2) (A.3.14)

-22V- sin~l[-N-z

+ Vzlog ; 0<z <N,

where

a = V -z+ =

c = N/ -B +\V'z

A.4. Derivation of (4.14)

The Hamming bound in equation (4.13) requires the calculation of the

quantity

D = log2 [ z] (A.4.1)
1=0

where L-Li Direct calculation of the sum prior to taking the log

becomes impractical in many cases because of the large numbers involved. We

can, however, approximate D by 15 < D with D-6 1 or less without

directly evaluating any of the binomial coefficients by using the following

procedure.

1",;'" /:' ; 5,'"" ';. ;..'- -%. ;' ; :5;V''. * ;% '"" ''''"
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First, we need to find a range of values for t such that

D-1 < log 2 LK D . (A.4.2)

The right inequality in (A.2) is obvious for all t < L, with equality when I =0.

The left inequality is true if

L > I.(A.4.3)
I It \-I I "

Since the binomial coefficients increase monotonically for 0 < i <_ L/2. L

even, or 0 < i < (L-l)/2, L odd, and since the sum in (A.4.3) contains t

terms, we can conclude that the largest term in the sum is when i =t -1, and

thus the sum can be loosely upper bounded by

L > __ I ,\A.4.4)

i=0

so if we can find a range of values for t which satisfy

ILI tL (A.4.5)

we will also satisfy (A.4.3). To do this, we note the recursion relation for

binomial coefficients:

L 1; = , (A.4.6)

allowing us to simplify (A.4.5) to

L-+1> t, (A.4.7)
t

which means that the left side of (A.4.2) holds when

t 2 + t < L+1 . (A.4.8)

Now that we have bounded the log of a sum of a series of binomial

coefficients by the log of the largest coefficient in the series, we can compute

the logarithm directly by using Stirling's bound on the factorial, which states
4181

I.0
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(27)1/ 2
nn+1/

2
e -n e (12n+1) ' < n! < (2-)1/

2
,, n+l/2 e-n e (12n) (A.4.9)

Before evaluating _L! by using (A.4.9), note that our goal is to insure

that the right inequality in (A.4.2) is satisfied so that we have indeed produced

an upper bound on the effective data throughput T given by (4.13).

Therefore, the numerator L! should be replaced by the left inequality in

(A.4.9), and the right inequality should be used for the denominator terms t!

and (L-t)!. After taking logarithms, we arrive at the desired result:

D = (L+-)log2 (L) + (12L+1)- ' - 1og2 (2- )  (A.4.10)

- (t +2)1og 2 (t) - (L -t +)l9og 2(L -t)

<1o2LI<D>0t2 + t < L+1.

Although the left inequality in (A.4.2) no longer strictly applies, the Stirling

bounds are close enough to the actual value for the binomial coefficients that

we are still insured of a reasonably tight upper bound on the effective

throughput T without having to calculate the sum of a number of (possibly

large) binomial coefficients.
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ABSTRACT

Morrow, Robert Kendall, Jr., Ph.D., Purdue University, May 1988. Bit-to-Bit
Error Dependence in Direct-Sequence Spread-Spectrum Multiple-Access Packet
Radio Systems. Major Professor: James S. Lehnert.

Slotted direct-sequence spread-spectrum multiple-acoess (DS/SSMA)

packet broadcasting systems with random signature sequences are analyzed

within the framework of the lower three layers of the International Standards

Organization Reference Model of Open Systems Interconnection. At the physi-

cal layer, we show that a widely-used Gaussian approximation (which we call

the Standard Gaussian Approximation) for the probability of data bit error in

a chip and phase asynchronous system is accurate only when there are a large

number of simultaneous users on the channel; otherwise, this approximation

can be optimistic by several orders of magnitude. For interfering signals with

fixed delays and phases relative to the desired signal, however, the Standard

Gaussian Approximation is quite accurate for any number of simultaneous

users. To obtain a closer approximation to the probability of data bit error

for an asynchronous system, we introduce the Improved Gaussian Approxima-

tion, which involves finding the distribution of the multiple-access interference

variance over all possible delay and phase values and then taking a Gaussian

approximation over the support of the distribution and averaging the results.

To accurately analyze packet performance at the data link layer, we first

use the theory of moment spaces to gain insight on the effect of bit-to-bit error

dependence caused by the constant relative delays and (possibly) phases of the
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interfering signals over the duration of a desired packet. If no error control is

used, we find that this error dependence increases the average probability of

packet success. When error control is employed and the channel is lightly

loaded, then packet performance diminishes when bit error dependencies exist,

but performance improves when the channel is heavily loaded and the

multiple-access interference is high. Numerical results for the probability of

packet success are obtained through the Improved Gaussian Approximation.

At the network layer, provided packet losses occur only from data bit

errors due to multiple-access interference, we show that a DS/SSMA packet

radio system using the slotted ALOHA protocol possesses a significant

throughput advantage over that of an equivalent narrow-band slotted ALOHA

system. Furthermore, if error control is used to correct some of the data bit

errors in the packet, then the maximum throughput per unit bandwidth of the

DS/SSMA system is also higher.
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